hasibzunair's picture
inital files
46fdf2a
raw
history blame
1.85 kB
import os
import json
import random
import argparse
def make_wider(tag, value, data_path):
img_path = os.path.join(data_path, "Image")
ann_path = os.path.join(data_path, "Annotations")
ann_file = os.path.join(ann_path, "wider_attribute_{}.json".format(tag))
data = json.load(open(ann_file, "r"))
final = []
image_list = data['images']
for image in image_list:
for person in image["targets"]: # iterate over each person
tmp = {}
tmp['img_path'] = os.path.join(img_path, image['file_name'])
tmp['bbox'] = person['bbox']
attr = person["attribute"]
for i, item in enumerate(attr):
if item == -1:
attr[i] = 0
if item == 0:
attr[i] = value # pad un-specified samples
if item == 1:
attr[i] = 1
tmp["target"] = attr
final.append(tmp)
json.dump(final, open("data/wider/{}_wider.json".format(tag), "w"))
print("data/wider/{}_wider.json".format(tag))
# which is the following format:
# [item1, item2, item3, ......,]
# item1 = {
# "target":
# "img_path":
# }
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", default="Dataset/WIDER_ATTRIBUTE", type=str)
args = parser.parse_args()
if not os.path.exists("data/wider"):
os.makedirs("data/wider")
# 0 (zero) means negative, we treat un-specified attribute as negative in the trainval set
make_wider(tag='trainval', value=0, data_path=args.data_path)
# 99 means we ignore un-specified attribute in the test set, following previous work
# the number 99 can be properly identified when evaluating mAP
make_wider(tag='test', value=99, data_path=args.data_path)