Spaces:
Sleeping
Sleeping
""" Vision Transformer (ViT) in PyTorch | |
A PyTorch implement of Vision Transformers as described in | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
Status/TODO: | |
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. | |
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. | |
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. | |
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.model_zoo as model_zoo | |
from functools import partial | |
from .timm_utils import DropPath, to_2tuple, trunc_normal_ | |
from .csra import MHA, CSRA | |
default_cfgs = { | |
'vit_base_patch16_224': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
'vit_large_patch16_224':'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth' | |
} | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads # 64 | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# qkv (3, B, 12, N, C/12) | |
# q (B, 12, N, C/12) | |
# k (B, 12, N, C/12) | |
# v (B, 12, N, C/12) | |
# attn (B, 12, N, N) | |
# x (B, 12, N, C/12) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = to_2tuple(img_size) | |
self.img_size = img_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature | |
# map for all networks, the feature metadata has reliable channel and stride info, but using | |
# stride to calc feature dim requires info about padding of each stage that isn't captured. | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = to_2tuple(feature_size) | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
self.num_patches = feature_size[0] * feature_size[1] | |
self.proj = nn.Linear(feature_dim, embed_dim) | |
def forward(self, x): | |
x = self.backbone(x)[-1] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class VIT_CSRA(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, cls_num_heads=1, cls_num_cls=80, lam=0.3): | |
super().__init__() | |
self.add_w = 0. | |
self.normalize = False | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
if hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.HW = int(math.sqrt(num_patches)) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here | |
#self.repr = nn.Linear(embed_dim, representation_size) | |
#self.repr_act = nn.Tanh() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
# We add our MHA (CSRA) beside the orginal VIT structure below | |
self.head = nn.Sequential() # delete original classifier | |
self.classifier = MHA(input_dim=embed_dim, num_heads=cls_num_heads, num_classes=cls_num_cls, lam=lam) | |
self.loss_func = F.binary_cross_entropy_with_logits | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def backbone(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
# (B, 1+HW, C) | |
# we use all the feature to form the tensor like B C H W | |
x = x[:, 1:] | |
b, hw, c = x.shape | |
x = x.transpose(1, 2) | |
x = x.reshape(b, c, self.HW, self.HW) | |
return x | |
def forward_train(self, x, target): | |
x = self.backbone(x) | |
logit = self.classifier(x) | |
loss = self.loss_func(logit, target, reduction="mean") | |
return logit, loss | |
def forward_test(self, x): | |
x = self.backbone(x) | |
x = self.classifier(x) | |
return x | |
def forward(self, x, target=None): | |
if target is not None: | |
return self.forward_train(x, target) | |
else: | |
return self.forward_test(x) | |
def _conv_filter(state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
def VIT_B16_224_CSRA(pretrained=True, cls_num_heads=1, cls_num_cls=80, lam=0.3): | |
model = VIT_CSRA( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), cls_num_heads=cls_num_heads, cls_num_cls=cls_num_cls, lam=lam) | |
model_url = default_cfgs['vit_base_patch16_224'] | |
if pretrained: | |
state_dict = model_zoo.load_url(model_url) | |
model.load_state_dict(state_dict, strict=False) | |
return model | |
def VIT_L16_224_CSRA(pretrained=True, cls_num_heads=1, cls_num_cls=80, lam=0.3): | |
model = VIT_CSRA( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), cls_num_heads=cls_num_heads, cls_num_cls=cls_num_cls, lam=lam) | |
model_url = default_cfgs['vit_large_patch16_224'] | |
if pretrained: | |
state_dict = model_zoo.load_url(model_url) | |
model.load_state_dict(state_dict, strict=False) | |
# load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) | |
return model |