Spaces:
Sleeping
Sleeping
""" DropBlock, DropPath | |
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. | |
Papers: | |
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) | |
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) | |
Code: | |
DropBlock impl inspired by two Tensorflow impl that I liked: | |
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 | |
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def drop_block_2d( | |
x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, | |
with_noise: bool = False, inplace: bool = False, batchwise: bool = False): | |
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf | |
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training | |
runs with success, but needs further validation and possibly optimization for lower runtime impact. | |
""" | |
B, C, H, W = x.shape | |
total_size = W * H | |
clipped_block_size = min(block_size, min(W, H)) | |
# seed_drop_rate, the gamma parameter | |
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( | |
(W - block_size + 1) * (H - block_size + 1)) | |
# Forces the block to be inside the feature map. | |
w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device)) | |
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ | |
((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) | |
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) | |
if batchwise: | |
# one mask for whole batch, quite a bit faster | |
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) | |
else: | |
uniform_noise = torch.rand_like(x) | |
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) | |
block_mask = -F.max_pool2d( | |
-block_mask, | |
kernel_size=clipped_block_size, # block_size, | |
stride=1, | |
padding=clipped_block_size // 2) | |
if with_noise: | |
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) | |
if inplace: | |
x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) | |
else: | |
x = x * block_mask + normal_noise * (1 - block_mask) | |
else: | |
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) | |
if inplace: | |
x.mul_(block_mask * normalize_scale) | |
else: | |
x = x * block_mask * normalize_scale | |
return x | |
def drop_block_fast_2d( | |
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, | |
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): | |
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf | |
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid | |
block mask at edges. | |
""" | |
B, C, H, W = x.shape | |
total_size = W * H | |
clipped_block_size = min(block_size, min(W, H)) | |
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( | |
(W - block_size + 1) * (H - block_size + 1)) | |
if batchwise: | |
# one mask for whole batch, quite a bit faster | |
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma | |
else: | |
# mask per batch element | |
block_mask = torch.rand_like(x) < gamma | |
block_mask = F.max_pool2d( | |
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) | |
if with_noise: | |
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) | |
if inplace: | |
x.mul_(1. - block_mask).add_(normal_noise * block_mask) | |
else: | |
x = x * (1. - block_mask) + normal_noise * block_mask | |
else: | |
block_mask = 1 - block_mask | |
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) | |
if inplace: | |
x.mul_(block_mask * normalize_scale) | |
else: | |
x = x * block_mask * normalize_scale | |
return x | |
class DropBlock2d(nn.Module): | |
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf | |
""" | |
def __init__(self, | |
drop_prob=0.1, | |
block_size=7, | |
gamma_scale=1.0, | |
with_noise=False, | |
inplace=False, | |
batchwise=False, | |
fast=True): | |
super(DropBlock2d, self).__init__() | |
self.drop_prob = drop_prob | |
self.gamma_scale = gamma_scale | |
self.block_size = block_size | |
self.with_noise = with_noise | |
self.inplace = inplace | |
self.batchwise = batchwise | |
self.fast = fast # FIXME finish comparisons of fast vs not | |
def forward(self, x): | |
if not self.training or not self.drop_prob: | |
return x | |
if self.fast: | |
return drop_block_fast_2d( | |
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) | |
else: | |
return drop_block_2d( | |
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |