hasibzunair's picture
inital files
46fdf2a
raw
history blame
8.02 kB
import json
import glob
import random
from torch.utils.data import Dataset
from PIL import Image
from torchvision.transforms import transforms
import torch
import numpy as np
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
# modify for transformation for vit
# modfify wider crop-person images
###### Base data loader ######
class DataSet(Dataset):
def __init__(
self,
ann_files,
augs,
img_size,
dataset,
):
self.dataset = dataset
self.ann_files = ann_files
self.augment = self.augs_function(augs, img_size)
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1])]
# In this paper, we normalize the image data to [0, 1]
# You can also use the so called 'ImageNet' Normalization method
)
self.anns = []
self.load_anns()
print(self.augment)
# in wider dataset we use vit models
# so transformation has been changed
if self.dataset == "wider":
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
def augs_function(self, augs, img_size):
t = []
if "randomflip" in augs:
t.append(transforms.RandomHorizontalFlip())
if "ColorJitter" in augs:
t.append(
transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0
)
)
if "resizedcrop" in augs:
t.append(transforms.RandomResizedCrop(img_size, scale=(0.7, 1.0)))
if "RandAugment" in augs:
t.append(RandAugment())
t.append(transforms.Resize((img_size, img_size)))
return transforms.Compose(t)
def load_anns(self):
self.anns = []
for ann_file in self.ann_files:
json_data = json.load(open(ann_file, "r"))
self.anns += json_data
def __len__(self):
return len(self.anns)
def __getitem__(self, idx):
idx = idx % len(self)
ann = self.anns[idx]
img = Image.open(ann["img_path"]).convert("RGB")
if self.dataset == "wider":
x, y, w, h = ann["bbox"]
img_area = img.crop([x, y, x + w, y + h])
img_area = self.augment(img_area)
img_area = self.transform(img_area)
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img_area,
}
else: # voc and coco
img = self.augment(img)
img = self.transform(img)
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img,
}
return message
# finally, if we use dataloader to get the data, we will get
# {
# "img_path": list, # length = batch_size
# "target": Tensor, # shape: batch_size * num_classes
# "img": Tensor, # shape: batch_size * 3 * 224 * 224
# }
def preprocess_scribble(img, img_size):
transform = transforms.Compose(
[
transforms.Resize(img_size, BICUBIC),
transforms.CenterCrop(img_size),
#_convert_image_to_rgb,
transforms.ToTensor(),
]
)
return transform(img)
class DataSetMaskSup(Dataset):
"""
Data loader with scribbles.
"""
def __init__(
self,
ann_files,
augs,
img_size,
dataset,
):
self.dataset = dataset
self.ann_files = ann_files
self.img_size = img_size
self.augment = self.augs_function(augs, img_size)
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1])]
# In this paper, we normalize the image data to [0, 1]
# You can also use the so called 'ImageNet' Normalization method
)
self.anns = []
self.load_anns()
print(self.augment)
# scribbles
self._scribbles_folder = "./datasets/SCRIBBLES"
# Type of masks to use, this is hardcoded since we find that high masks
# work better in MSL. See paper for details.
# for low masks
# self._scribbles = sorted(glob.glob(self._scribbles_folder + "/*.png"))[
# :1000
# ]
# for high masks
self._scribbles = sorted(glob.glob(self._scribbles_folder + "/*.png"))[::-1][
:1000
]
# in wider dataset we use vit models
# so transformation has been changed
if self.dataset == "wider":
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
def augs_function(self, augs, img_size):
t = []
if "randomflip" in augs:
t.append(transforms.RandomHorizontalFlip())
if "ColorJitter" in augs:
t.append(
transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0
)
)
if "resizedcrop" in augs:
t.append(transforms.RandomResizedCrop(img_size, scale=(0.7, 1.0)))
if "RandAugment" in augs:
t.append(RandAugment())
t.append(transforms.Resize((img_size, img_size)))
return transforms.Compose(t)
def load_anns(self):
self.anns = []
for ann_file in self.ann_files:
json_data = json.load(open(ann_file, "r"))
self.anns += json_data
def __len__(self):
return len(self.anns)
def __getitem__(self, idx):
idx = idx % len(self)
ann = self.anns[idx]
img = Image.open(ann["img_path"]).convert("RGB")
# get scribble
scribble_path = self._scribbles[
random.randint(0, 950)
]
scribble = Image.open(scribble_path).convert('P')
scribble = preprocess_scribble(scribble, self.img_size)
scribble_t = (scribble > 0).float() # threshold to [0,1]
inv_scribble = (torch.max(scribble_t) - scribble_t) # inverted scribble
if self.dataset == "wider":
x, y, w, h = ann["bbox"]
img_area = img.crop([x, y, x + w, y + h])
img_area = self.augment(img_area)
img_area = self.transform(img_area)
# masked image
masked_image = img_area * inv_scribble
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img_area,
"masked_img": masked_image,
#"scribble": inv_scribble,
}
else: # voc and coco
img = self.augment(img)
img = self.transform(img)
# masked image
masked_image = img * inv_scribble
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img,
"masked_img": masked_image,
#"scribble": inv_scribble,
}
return message
# finally, if we use dataloader to get the data, we will get
# {
# "img_path": list, # length = batch_size
# "target": Tensor, # shape: batch_size * num_classes
# "img": Tensor, # shape: batch_size * 3 * 224 * 224
# "masked_img": Tensor, # shape: batch_size * 3 * 224 * 224
# }