|
""" Vision Transformer (ViT) in PyTorch |
|
|
|
A PyTorch implement of Vision Transformers as described in |
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 |
|
|
|
The official jax code is released and available at https://github.com/google-research/vision_transformer |
|
|
|
Status/TODO: |
|
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. |
|
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. |
|
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. |
|
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. |
|
|
|
Acknowledgments: |
|
* The paper authors for releasing code and weights, thanks! |
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out |
|
for some einops/einsum fun |
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT |
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo as model_zoo |
|
from functools import partial |
|
from .timm_utils import DropPath, to_2tuple, trunc_normal_ |
|
from .csra import MHA, CSRA |
|
|
|
|
|
default_cfgs = { |
|
'vit_base_patch16_224': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', |
|
'vit_large_patch16_224':'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth' |
|
} |
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class HybridEmbed(nn.Module): |
|
""" CNN Feature Map Embedding |
|
Extract feature map from CNN, flatten, project to embedding dim. |
|
""" |
|
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
assert isinstance(backbone, nn.Module) |
|
img_size = to_2tuple(img_size) |
|
self.img_size = img_size |
|
self.backbone = backbone |
|
if feature_size is None: |
|
with torch.no_grad(): |
|
|
|
|
|
|
|
training = backbone.training |
|
if training: |
|
backbone.eval() |
|
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] |
|
feature_size = o.shape[-2:] |
|
feature_dim = o.shape[1] |
|
backbone.train(training) |
|
else: |
|
feature_size = to_2tuple(feature_size) |
|
feature_dim = self.backbone.feature_info.channels()[-1] |
|
self.num_patches = feature_size[0] * feature_size[1] |
|
self.proj = nn.Linear(feature_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x)[-1] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class VIT_CSRA(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, cls_num_heads=1, cls_num_cls=80, lam=0.3): |
|
super().__init__() |
|
self.add_w = 0. |
|
self.normalize = False |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
if hybrid_backbone is not None: |
|
self.patch_embed = HybridEmbed( |
|
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) |
|
else: |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
self.HW = int(math.sqrt(num_patches)) |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
|
|
self.head = nn.Sequential() |
|
self.classifier = MHA(input_dim=embed_dim, num_heads=cls_num_heads, num_classes=cls_num_cls, lam=lam) |
|
|
|
self.loss_func = F.binary_cross_entropy_with_logits |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def backbone(self, x): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
|
|
|
|
x = x[:, 1:] |
|
b, hw, c = x.shape |
|
x = x.transpose(1, 2) |
|
x = x.reshape(b, c, self.HW, self.HW) |
|
|
|
return x |
|
|
|
def forward_train(self, x, target): |
|
x = self.backbone(x) |
|
logit = self.classifier(x) |
|
loss = self.loss_func(logit, target, reduction="mean") |
|
return logit, loss |
|
|
|
def forward_test(self, x): |
|
x = self.backbone(x) |
|
x = self.classifier(x) |
|
return x |
|
|
|
def forward(self, x, target=None): |
|
if target is not None: |
|
return self.forward_train(x, target) |
|
else: |
|
return self.forward_test(x) |
|
|
|
|
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def VIT_B16_224_CSRA(pretrained=True, cls_num_heads=1, cls_num_cls=80, lam=0.3): |
|
model = VIT_CSRA( |
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), cls_num_heads=cls_num_heads, cls_num_cls=cls_num_cls, lam=lam) |
|
|
|
model_url = default_cfgs['vit_base_patch16_224'] |
|
if pretrained: |
|
state_dict = model_zoo.load_url(model_url) |
|
model.load_state_dict(state_dict, strict=False) |
|
return model |
|
|
|
|
|
def VIT_L16_224_CSRA(pretrained=True, cls_num_heads=1, cls_num_cls=80, lam=0.3): |
|
model = VIT_CSRA( |
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), cls_num_heads=cls_num_heads, cls_num_cls=cls_num_cls, lam=lam) |
|
|
|
model_url = default_cfgs['vit_large_patch16_224'] |
|
if pretrained: |
|
state_dict = model_zoo.load_url(model_url) |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
return model |