File size: 5,216 Bytes
46fdf2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import json
import argparse
import numpy as np
import xml.dom.minidom as XML



voc_cls_id = {"aeroplane":0, "bicycle":1, "bird":2, "boat":3, "bottle":4,
               "bus":5, "car":6, "cat":7, "chair":8, "cow":9,
               "diningtable":10, "dog":11, "horse":12, "motorbike":13, "person":14,
               "pottedplant":15, "sheep":16, "sofa":17, "train":18, "tvmonitor":19}


def get_label(data_path):
    print("generating labels for VOC07 dataset")
    xml_paths = os.path.join(data_path, "VOC2007/Annotations/")
    save_dir = "data/voc07/labels"

    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    for i in os.listdir(xml_paths):
        if not i.endswith(".xml"):
            continue
        s_name = i.split('.')[0] + ".txt"
        s_dir = os.path.join(save_dir, s_name)
        xml_path = os.path.join(xml_paths, i)
        DomTree = XML.parse(xml_path)
        Root = DomTree.documentElement

        obj_all = Root.getElementsByTagName("object")
        leng = len(obj_all)
        cls = []
        difi_tag = []
        for obj in obj_all:
            # get the classes
            obj_name = obj.getElementsByTagName('name')[0]
            one_class = obj_name.childNodes[0].data
            cls.append(voc_cls_id[one_class])

            difficult = obj.getElementsByTagName('difficult')[0]
            difi_tag.append(difficult.childNodes[0].data)

        for i, c in enumerate(cls):
            with open(s_dir, "a") as f:
                f.writelines("%s,%s\n" % (c, difi_tag[i]))


def transdifi(data_path):
    print("generating final json file for VOC07 dataset")
    label_dir = "data/voc07/labels/"
    img_dir = os.path.join(data_path, "VOC2007/JPEGImages/")

    # get trainval test id
    id_dirs = os.path.join(data_path, "VOC2007/ImageSets/Main/")
    f_train = open(os.path.join(id_dirs, "train.txt"), "r").readlines()
    f_val = open(os.path.join(id_dirs, "val.txt"), "r").readlines()
    f_trainval = f_train + f_val
    f_test = open(os.path.join(id_dirs, "test.txt"), "r")

    trainval_id =  np.sort([int(line.strip()) for line in f_trainval]).tolist()
    test_id = [int(line.strip()) for line in f_test]
    trainval_data = []
    test_data = []

    # ternary label
    # -1 means negative
    # 0 means difficult
    # +1 means positive

    # binary label
    # 0 means negative
    # +1 means positive 

    # we use binary labels in our implementation

    for item in sorted(os.listdir(label_dir)):
        with open(os.path.join(label_dir, item), "r") as f:

            target = np.array([-1] * 20)
            classes = []
            diffi_tag = []

            for line in f.readlines():
                cls, tag = map(int, line.strip().split(','))
                classes.append(cls)
                diffi_tag.append(tag)

            classes = np.array(classes)
            diffi_tag = np.array(diffi_tag)
            for i in range(20):
                if i in classes:
                    i_index = np.where(classes == i)[0]
                    if len(i_index) == 1:
                        target[i] = 1 - diffi_tag[i_index]
                    else:
                        if len(i_index) == sum(diffi_tag[i_index]):
                            target[i] = 0
                        else:
                            target[i] = 1
                else:
                    continue
            img_path = os.path.join(img_dir, item.split('.')[0]+".jpg")

            if int(item.split('.')[0]) in trainval_id:
                target[target == -1] = 0  # from ternary to binary by treating difficult as negatives
                data = {"target": target.tolist(), "img_path": img_path}      
                trainval_data.append(data)
            if int(item.split('.')[0]) in test_id:
                data = {"target": target.tolist(), "img_path": img_path}      
                test_data.append(data)

    json.dump(trainval_data, open("data/voc07/trainval_voc07.json", "w"))
    json.dump(test_data, open("data/voc07/test_voc07.json", "w"))
    print("VOC07 data preparing finished!")
    print("data/voc07/trainval_voc07.json data/voc07/test_voc07.json")
    
    # remove label cash
    for item in os.listdir(label_dir):
        os.remove(os.path.join(label_dir, item))
    os.rmdir(label_dir)
    

# We treat difficult classes in trainval_data as negtive while ignore them in test_data
# The ignoring operation can be automatically done during evaluation (testing).
# The final json file include: trainval_voc07.json & test_voc07.json
# which is the following format:
# [item1, item2, item3, ......,]
# item1 = {
#      "target": 
#      "img_path":      
# }

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Usage: --data_path /your/dataset/path/VOCdevkit
    parser.add_argument("--data_path", default="Dataset/VOCdevkit/", type=str, help="The absolute path of VOCdevkit")
    args = parser.parse_args()

    if not os.path.exists("data/voc07"):
        os.makedirs("data/voc07")
    
    if 'VOCdevkit' not in args.data_path:
        print("WARNING: please include \'VOCdevkit\' str in your args.data_path")
        # exit()

    get_label(args.data_path)
    transdifi(args.data_path)