|
from openfactcheck.core.state import FactCheckerState |
|
from openfactcheck.core.solver import StandardTaskSolver, Solver |
|
|
|
from .rarr_utils.question_generation import run_rarr_question_generation |
|
from .rarr_utils.functional_prompt import QGEN_PROMPT |
|
from .rarr_utils import search |
|
|
|
|
|
@Solver.register("rarr_retriever", "claims", "claims_with_evidences") |
|
class RARRRetriever(StandardTaskSolver): |
|
def __init__(self, args): |
|
super().__init__(args) |
|
self.model = self.global_config.get("rarr_model", "gpt-3.5-turbo-instruct") |
|
self.temperature_qgen = args.get("temperature_qgen", 0.7) |
|
self.num_rounds_qgen = args.get("num_rounds_qgen", 3) |
|
self.max_search_results_per_query = args.get("max_search_results_per_query", 5) |
|
self.max_sentences_per_passage = args.get("max_sentences_per_passage", 4) |
|
self.sliding_distance = args.get("sliding_distance", 1) |
|
self.max_passages_per_search_result = args.get("max_passages_per_search_result", 1) |
|
|
|
def __call__(self, state: FactCheckerState, *args, **kwargs): |
|
claims = state.get(self.input_name) |
|
|
|
results = dict() |
|
for claim in claims: |
|
questions = run_rarr_question_generation( |
|
claim=claim, |
|
context=None, |
|
model=self.model, |
|
prompt=QGEN_PROMPT, |
|
temperature=self.temperature_qgen, |
|
num_rounds=self.num_rounds_qgen, |
|
) |
|
evidences = [] |
|
for question in questions: |
|
q_evidences = search.run_search( |
|
query=question, |
|
max_search_results_per_query=self.max_search_results_per_query, |
|
max_sentences_per_passage=self.max_sentences_per_passage, |
|
sliding_distance=self.sliding_distance, |
|
max_passages_per_search_result_to_return=self.max_passages_per_search_result, |
|
) |
|
evidences.extend([(question, x['text']) for x in q_evidences]) |
|
|
|
results[claim] = evidences |
|
|
|
state.set(self.output_name, results) |
|
return True, state |
|
|