Hasan Iqbal
Added LLM Response Evaluation frontend
cbfd993 unverified
raw
history blame
11.5 kB
import os
import sys
import uuid
import tqdm
import json
import traceback
from pathlib import Path
from typing import Callable
from openfactcheck.lib.logger import logger
from openfactcheck.lib.config import OpenFactCheckConfig
from openfactcheck.core.solver import SOLVER_REGISTRY, Solver
from openfactcheck.core.state import FactCheckerState
class OpenFactCheck:
"""
OpenFactCheck class to evaluate the factuality of a response using a pipeline of solvers.
Parameters
----------
config : OpenFactCheckConfig
An instance of OpenFactCheckConfig containing the configuration
settings for OpenFactCheck.
Attributes
----------
logger : Logger
An instance of the logger to log messages.
config : OpenFactCheckConfig
An instance of OpenFactCheckConfig containing the configuration
settings for OpenFactCheck.
solver_configs : dict
A dictionary containing the configuration settings for the solvers.
pipeline : list
A list of solvers to be included in the pipeline.
output_path : str
The path to the output directory where the results will be stored.
Methods
-------
load_solvers(solver_paths)
Load solvers from the given paths.
list_solvers()
List all registered solvers.
list_claimprocessors()
List all registered claim processors.
list_retrievers()
List all registered retrievers.
list_verifiers()
List all registered verifiers.
init_solver(solver_name, args)
Initialize a solver with the given configuration.
init_solvers()
Initialize all registered solvers.
init_pipeline()
Initialize the pipeline with the given configuration.
init_pipeline_manually(pipeline)
Initialize the pipeline with the given configuration.
persist_output(state, idx, solver_name, cont, sample_name=0)
Persist the output of the solver.
read_output(sample_name)
Read the output file for the given sample.
remove_output(sample_name)
Remove the output file for the given sample.
__call__(response, question, callback_fun, **kwargs)
Evaluate the response using the pipeline.
Examples
--------
>>> config = OpenFactCheckConfig("config.json")
>>> ofc = OpenFactCheck(config)
>>> response, sample_name = ofc("This is a sample response.")
>>> output = ofc.read_output(sample_name)
>>> ofc.remove_output(sample_name)
"""
def __init__(self, config: OpenFactCheckConfig):
"""
Initialize OpenFactCheck with the given configuration.
Parameters
----------
config : OpenFactCheckConfig
An instance of OpenFactCheckConfig containing the configuration
settings for OpenFactCheck.
"""
self.logger = logger
self.config = config
# Initialize attributes
self.solver_configs = self.config.solver_configs
self.pipeline = self.config.pipeline
self.output_path = os.path.abspath(self.config.output_path)
# Load and register solvers
self.load_solvers(self.config.solver_paths)
self.logger.info(f"Loaded solvers: {list(self.list_solvers().keys())}")
# Initialize the pipeline
self.pipeline = self.init_pipeline()
self.logger.info("-------------- OpenFactCheck Initialized ----------------")
self.logger.info("Pipeline:")
for idx, (name, (solver, iname, oname)) in enumerate(self.pipeline.items()):
self.logger.info(f"{idx}-{name} ({iname} -> {oname})")
self.logger.info("---------------------------------------------------------")
@staticmethod
def load_solvers(solver_paths):
"""
Load solvers from the given paths
"""
for solver_path in solver_paths:
abs_path = Path(solver_path).resolve()
if abs_path.is_dir():
sys.path.append(str(abs_path.parent))
Solver.load(str(abs_path), abs_path.name)
@staticmethod
def list_solvers():
"""
List all registered solvers
"""
return SOLVER_REGISTRY
@staticmethod
def list_claimprocessors():
"""
List all registered claim processors
"""
# Get all claim processors
claimprocessors = {}
for solver, value in SOLVER_REGISTRY.items():
if "claimprocessor" in solver:
claimprocessors[solver] = value
return claimprocessors
@staticmethod
def list_retrievers():
"""
List all registered retrievers
"""
# Get all retrievers
retrievers = {}
for solver, value in SOLVER_REGISTRY.items():
if "retriever" in solver:
retrievers[solver] = value
return retrievers
@staticmethod
def list_verifiers():
"""
List all registered verifiers
"""
# Get all verifiers
verifiers = {}
for solver, value in SOLVER_REGISTRY.items():
if "verifier" in solver:
verifiers[solver] = value
return verifiers
def init_solver(self, solver_name, args):
"""
Initialize a solver with the given configuration
"""
# Check if the solver is registered
if solver_name not in SOLVER_REGISTRY:
logger.error(f"{solver_name} not in SOLVER_REGISTRY")
raise RuntimeError(f"{solver_name} not in SOLVER_REGISTRY")
# Initialize the solver
solver_cls = SOLVER_REGISTRY[solver_name]
solver_cls.input_name = args.get("input_name", solver_cls.input_name)
solver_cls.output_name = args.get("output_name", solver_cls.output_name)
logger.info(f"Solver {solver_cls(args)} initialized")
return solver_cls(args), solver_cls.input_name, solver_cls.output_name
def init_solvers(self):
"""
Initialize all registered solvers
"""
solvers = {}
for k, v in self.solver_configs.items():
solver, input_name, output_name = self.init_solver(k, v)
solvers[k] = (solver, input_name, output_name)
return solvers
def init_pipeline(self):
"""
Initialize the pipeline with the given configuration
"""
pipeline = {}
for required_solver in self.config.pipeline:
if required_solver not in self.solver_configs:
logger.error(f"{required_solver} not in solvers config")
raise RuntimeError(f"{required_solver} not in solvers config")
solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
pipeline[required_solver] = (solver, input_name, output_name)
return pipeline
def init_pipeline_manually(self, pipeline: list):
"""
Initialize the pipeline with the given configuration
Parameters
----------
pipeline : list
A list of solvers to be included in the pipeline
"""
self.pipeline = {}
for required_solver in pipeline:
if required_solver not in self.solver_configs:
raise RuntimeError(f"{required_solver} not in solvers config")
solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
self.pipeline[required_solver] = (solver, input_name, output_name)
def persist_output(self, state: FactCheckerState, idx, solver_name, cont, sample_name=0):
result = {
"idx": idx,
"solver": solver_name,
"continue": cont,
"state": state.to_dict()
}
with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'a', encoding="utf-8") as f:
f.write(json.dumps(result, ensure_ascii=False) + '\n')
def read_output(self, sample_name):
"""
Read the output file for the given sample
"""
with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'r', encoding="utf-8") as f:
return [json.loads(line) for line in f]
def remove_output(self, sample_name):
"""
Remove the output file for the given sample
"""
os.remove(os.path.join(self.output_path, f'{sample_name}.jsonl'))
def __call__(self, response: str, question: str = None, stream: bool = False, callback: Callable = None, **kwargs):
"""
Evaluate the response using the pipeline
"""
def evaluate_response():
# Check if sample_name is provided in kwargs else generate a random one
sample_name = kwargs.get("sample_name", str(uuid.uuid4().hex[:6]))
# Initialize the state
solver_output = FactCheckerState(question=question, response=response)
# Initialize the output name
output_name = "response"
for idx, (name, (solver, input_name, output_name)) in tqdm.tqdm(enumerate(self.pipeline.items()),
total=len(self.pipeline)):
logger.info(f"Invoking solver: {idx}-{name}")
logger.info(f"State content: {solver_output}")
try:
# Solver input is the output of the previous solver
solver_input = solver_output
# Run the solver
cont, solver_output = solver(solver_input, **kwargs)
# Persist the output
logger.debug(f"Latest result: {solver_output}")
if callback:
callback(
index=idx,
sample_name=sample_name,
solver_name=name,
input_name=input_name,
output_name=output_name,
input=solver_input.__dict__,
output=solver_output.__dict__,
continue_run=cont
)
# Stream the output
if stream:
yield {
"index": idx,
"solver_name": name,
"input_name": input_name,
"output_name": output_name,
"input": solver_input.__dict__,
"output": solver_output.__dict__,
"continue_run": cont
}
self.persist_output(solver_output, idx, name, cont, sample_name=sample_name)
except:
logger.error(f"Error at {traceback.format_exc()}")
cont = False
output_name = input_name
# Break if the solver returns False
if not cont:
logger.info(f"Break at {name}")
break
if not stream:
return solver_output.get(output_name)
# Execute the generator if stream is True, otherwise process normally
return evaluate_response()