Hasan Iqbal
Made the imports more user friendly
ec53a03 unverified
raw
history blame
13.8 kB
import re
import time
import pandas as pd
import streamlit as st
from openfactcheck.base import OpenFactCheck
from openfactcheck.app.utils import metric_card
def extract_text(claim):
"""
Extracts text from a claim that might be a string formatted as a dictionary.
"""
# Try to extract text using regular expression if claim is a string formatted as a dictionary
match = re.search(r"'text': '([^']+)'", claim)
if match:
return match.group(1)
return claim # Return as is if no dictionary format detected
# Create a function to check a LLM response
def evaluate_response(ofc: OpenFactCheck):
"""
This function creates a Streamlit app to evaluate the factuality of a LLM response.
"""
# Initialize the response_evaluator
response_evaluator = ofc.ResponseEvaluator
# Initialize the solvers
st.session_state.claimprocessors = ofc.list_claimprocessors()
st.session_state.retrievers = ofc.list_retrievers()
st.session_state.verifiers = ofc.list_verifiers()
st.write("This is where you can check factuality of a LLM response.")
# Customize FactChecker
st.write("Customize FactChecker")
# Dropdown in three columns
col1, col2, col3 = st.columns(3)
with col1:
if "claimprocessor" not in st.session_state:
st.session_state.claimprocessor = st.selectbox("Select Claim Processor", list(st.session_state.claimprocessors))
else:
st.session_state.claimprocessor = st.selectbox("Select Claim Processor", list(st.session_state.claimprocessors), index=list(st.session_state.claimprocessors).index(st.session_state.claimprocessor))
with col2:
if "retriever" not in st.session_state:
st.session_state.retriever = st.selectbox("Select Retriever", list(st.session_state.retrievers))
else:
st.session_state.retriever = st.selectbox("Select Retriever", list(st.session_state.retrievers), index=list(st.session_state.retrievers).index(st.session_state.retriever))
with col3:
if "verifier" not in st.session_state:
st.session_state.verifier = st.selectbox("Select Verifier", list(st.session_state.verifiers))
else:
st.session_state.verifier = st.selectbox("Select Verifier", list(st.session_state.verifiers), index=list(st.session_state.verifiers).index(st.session_state.verifier))
# Input
if "input_text" not in st.session_state:
st.session_state.input_text = {"text": st.text_area("Enter LLM response here", "This is a sample LLM response.")}
else:
st.session_state.input_text = {"text": st.text_area("Enter LLM response here", st.session_state.input_text["text"])}
# Button to check factuality
if st.button("Check Factuality"):
with st.status("Checking factuality...", expanded=True) as status:
# Configure the pipeline
st.write("Configuring pipeline...")
ofc.init_pipeline_manually([st.session_state.claimprocessor, st.session_state.retriever, st.session_state.verifier])
st.write("Pipeline configured...")
# Evaluate the response
st.write("Evaluating response...")
response = response_evaluator.evaluate_streaming(st.session_state.input_text)
st.write("Response evaluated...")
status.update(label="Factuality checked...", state="complete", expanded=False)
# Display pipeline configuration
pipeline_str = "   ┈➤   ".join([st.session_state.claimprocessor, st.session_state.retriever, st.session_state.verifier])
st.info(f"""**Pipeline**:    \n{pipeline_str}""")
# Store the final response in the session state
st.session_state.final_response = None
col1, col2 = st.columns([3, 1])
with col1:
def process_stream(responses):
"""
Process each response from the stream as a simulated chat output.
This function yields each word from the formatted text of the response,
adding a slight delay to simulate typing in a chat.
"""
for response in responses:
if "claimprocessor" in response["solver_name"]:
# Extract response details
output_text = response["output"]
# Get the number of detected claims
detected_claims = output_text.get("claims", [])
# Generate formatted text with enumerated claims in Markdown format
formatted_text = "### Detected Claims\n"
formatted_text += "\n".join(f"{i}. {extract_text(claim)}" for i, claim in enumerate(detected_claims, start=1))
formatted_text += "\n"
with col2:
metric_card(label="Detected Claims", value=len(detected_claims))
# Yield each word with a space and simulate typing by sleeping
for word in formatted_text.split(" "):
yield word + " "
time.sleep(0.01)
st.session_state.claimprocessor_flag = True
elif "retriever" in response["solver_name"]:
# Extract response details
output_text = response["output"]
evidences = []
for _, claim_with_evidences in output_text.get("claims_with_evidences", {}).items():
for evidence in claim_with_evidences:
evidences.append(evidence[1])
# # Generate formatted text with enumerated evidences in Markdown format
# formatted_text = "#### Retrieved Evidences\n"
# formatted_text += "\n".join(f"{i}. {evidence}" for i, evidence in enumerate(evidences, start=1))
# formatted_text += "\n"
with col2:
metric_card(label="Retrieved Evidences", value=len(evidences))
# # Yield each word with a space and simulate typing by sleeping
# for word in formatted_text.split(" "):
# yield word + " "
# time.sleep(0.01)
elif "verifier" in response["solver_name"]:
# Extract response details
output_text = response["output"]
# Get detail
details = output_text.get("detail", None)
if details is None:
detail_text = "The verifier did not provide any detail. Please use other verifiers for more information."
else:
detail_text = ""
# Apply color to the claim based on factuality
claims=0
false_claims = 0
true_claims = 0
controversial_claims = 0
unverified_claims = 0
for i, detail in enumerate(details):
# Get factuality information
factuality = str(detail.get("factuality", None))
if factuality is not None:
claim=detail.get("claim", "")
if factuality == "-1" or factuality == "False":
detail_text += f'##### :red[{str(i+1) + ". " + extract_text(claim)}]'
detail_text += "\n"
claims += 1
false_claims += 1
elif factuality == "1" or factuality == "True":
detail_text += f'##### :green[{str(i+1) + ". " + extract_text(claim)}]'
detail_text += "\n"
claims += 1
true_claims += 1
elif factuality == "0":
detail_text += f'##### :orange[{str(i+1) + ". " + extract_text(claim)}]'
detail_text += "\n"
claims += 1
controversial_claims += 1
else:
detail_text += f'##### :purple[{str(i+1) + ". " + extract_text(claim)}]'
detail_text += "\n"
claims += 1
unverified_claims += 1
else:
st.error("Factuality not found in the verifier output.")
# Add error information
if detail.get("error", None) is not "None":
detail_text += f"- **Error**: {detail.get('error', '')}"
detail_text += "\n"
# Add reasoning information
if detail.get("reasoning", None) is not "None":
detail_text += f"- **Reasoning**: {detail.get('reasoning', '')}"
detail_text += "\n"
# Add correction
if detail.get("correction", None) is not "":
detail_text += f"- **Correction**: {detail.get('correction', '')}"
detail_text += "\n"
# Add evidence
if detail.get("evidence", None) is not "":
evidence_text = ""
for evidence in detail.get("evidences", []):
evidence_text += f" - {evidence[1]}"
evidence_text += "\n"
detail_text += f"- **Evidence**:\n{evidence_text}"
# Generate formatted text with the overall factuality in Markdown format
formatted_text = "### Factuality Detail\n"
formatted_text += "Factuality of each claim is color-coded (:red[red means false], :green[green means true], :orange[orange means controversial], :violet[violet means unverified]).\n"
formatted_text += f"{detail_text}\n"
formatted_text += "\n"
# Get the number of true and false claims
with col2:
metric_card(label="Supported Claims", value=true_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
metric_card(label="Conflicted Claims", value=false_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
metric_card(label="Controversial Claims", value=controversial_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
metric_card(label="Unverified Claims", value=unverified_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
# Get overall factuality (label)
overall_factuality = output_text.get("label", "Unknown")
with col2:
with st.container():
if overall_factuality == True:
metric_card(label="Overall Factuality", value="True", background_color="#D4EDDA", border_left_color="#28A745")
elif overall_factuality == False:
metric_card(label="Overall Factuality", value="False", background_color="#F8D7DA", border_left_color="#DC3545")
# Get overall credibility (score)
overall_credibility = true_claims / claims if claims > 0 else 0
with col2:
if overall_credibility > 0.75 and overall_credibility <= 1:
# Green background
metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#D4EDDA", border_left_color="#28A745")
elif overall_credibility > 0.25 and overall_credibility <= 0.75:
# Yellow background
metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#FFF3CD", border_left_color="#FFC107")
else:
# Red background
metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#F8D7DA", border_left_color="#DC3545")
# Yield each word with a space and simulate typing by sleeping
for word in formatted_text.split(" "):
yield word + " "
time.sleep(0.01)
st.write_stream(process_stream(response))