File size: 12,746 Bytes
cbfd993
 
 
 
 
 
27f728f
cbfd993
aea72ae
 
 
 
 
 
 
 
 
 
cbfd993
 
 
 
 
 
 
974cf69
 
 
cbfd993
 
 
 
 
 
 
 
 
974cf69
 
 
 
cbfd993
974cf69
 
 
 
cbfd993
974cf69
 
 
 
cbfd993
 
974cf69
 
 
 
cbfd993
 
 
 
 
 
974cf69
cbfd993
 
 
 
 
974cf69
cbfd993
 
 
 
 
974cf69
cbfd993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea72ae
 
 
cbfd993
 
aea72ae
cbfd993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea72ae
 
 
 
cbfd993
 
aea72ae
cbfd993
aea72ae
 
 
 
cbfd993
 
 
 
 
aea72ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfd993
 
 
 
 
 
 
aea72ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import re
import time
import pandas as pd
import streamlit as st

from openfactcheck.core.base import OpenFactCheck
from openfactcheck.app.utils import metric_card

def extract_text(claim):
    """
    Extracts text from a claim that might be a string formatted as a dictionary.
    """
    # Try to extract text using regular expression if claim is a string formatted as a dictionary
    match = re.search(r"'text': '([^']+)'", claim)
    if match:
        return match.group(1)
    return claim  # Return as is if no dictionary format detected

# Create a function to check a LLM response
def evaluate_response(ofc: OpenFactCheck):
    """
    This function creates a Streamlit app to evaluate the factuality of a LLM response.
    """

    # Initialize the solvers
    st.session_state.claimprocessors = ofc.list_claimprocessors()
    st.session_state.retrievers = ofc.list_retrievers()
    st.session_state.verifiers = ofc.list_verifiers()

    st.write("This is where you can check factuality of a LLM response.")

    # Customize FactChecker
    st.write("Customize FactChecker")

    # Dropdown in three columns
    col1, col2, col3 = st.columns(3)
    with col1:
        if "claimprocessor" not in st.session_state:
            st.session_state.claimprocessor = st.selectbox("Select Claim Processor", list(st.session_state.claimprocessors))
        else:
            st.session_state.claimprocessor = st.selectbox("Select Claim Processor", list(st.session_state.claimprocessors), index=list(st.session_state.claimprocessors).index(st.session_state.claimprocessor))
    with col2:
        if "retriever" not in st.session_state:
            st.session_state.retriever = st.selectbox("Select Retriever", list(st.session_state.retrievers))
        else:
            st.session_state.retriever = st.selectbox("Select Retriever", list(st.session_state.retrievers), index=list(st.session_state.retrievers).index(st.session_state.retriever))
    with col3:
        if "verifier" not in st.session_state:
            st.session_state.verifier = st.selectbox("Select Verifier", list(st.session_state.verifiers))
        else:
            st.session_state.verifier = st.selectbox("Select Verifier", list(st.session_state.verifiers), index=list(st.session_state.verifiers).index(st.session_state.verifier))

    # Input
    if "input_text" not in st.session_state:
        st.session_state.input_text = {"text": st.text_area("Enter LLM response here", "This is a sample LLM response.")}
    else:
        st.session_state.input_text = {"text": st.text_area("Enter LLM response here", st.session_state.input_text["text"])}

    # Button to check factuality
    if st.button("Check Factuality"):
        with st.status("Checking factuality...", expanded=True) as status:
            # Configure the pipeline
            st.write("Configuring pipeline...")
            ofc.init_pipeline_manually([st.session_state.claimprocessor, st.session_state.retriever, st.session_state.verifier])
            st.write("Pipeline configured...")

            # Evaluate the response
            st.write("Evaluating response...")

            response = ofc(st.session_state.input_text, stream=True)
            st.write("Response evaluated...")

            status.update(label="Factuality checked...", state="complete", expanded=False)

        # Display pipeline configuration
        pipeline_str = "   ┈➤   ".join([st.session_state.claimprocessor, st.session_state.retriever, st.session_state.verifier])
        st.info(f"""**Pipeline**:    \n{pipeline_str}""")

        # Store the final response in the session state
        st.session_state.final_response = None

        col1, col2 = st.columns([3, 1])
        with col1:
            def process_stream(responses):
                """
                Process each response from the stream as a simulated chat output.
                This function yields each word from the formatted text of the response,
                adding a slight delay to simulate typing in a chat.
                """

                for response in responses:
                    if "claimprocessor" in response["solver_name"]:
                        # Extract response details
                        output_text = response["output"]

                        # Get the number of detected claims
                        detected_claims = output_text.get("claims", [])

                        # Generate formatted text with enumerated claims in Markdown format
                        formatted_text = "### Detected Claims\n"
                        formatted_text += "\n".join(f"{i}. {extract_text(claim)}" for i, claim in enumerate(detected_claims, start=1))
                        formatted_text += "\n"

                        with col2:
                            metric_card(label="Detected Claims", value=len(detected_claims))

                        # Yield each word with a space and simulate typing by sleeping
                        for word in formatted_text.split(" "):
                            yield word + " "
                            time.sleep(0.01)

                        st.session_state.claimprocessor_flag = True

                    elif "retriever" in response["solver_name"]:
                        # Extract response details
                        output_text = response["output"]

                        evidences = []
                        for _, claim_with_evidences in output_text.get("claims_with_evidences", {}).items():
                            for evidence in claim_with_evidences:
                                evidences.append(evidence[1])

                        # # Generate formatted text with enumerated evidences in Markdown format
                        # formatted_text = "#### Retrieved Evidences\n"
                        # formatted_text += "\n".join(f"{i}. {evidence}" for i, evidence in enumerate(evidences, start=1))
                        # formatted_text += "\n"

                        with col2:
                            metric_card(label="Retrieved Evidences", value=len(evidences))

                        # # Yield each word with a space and simulate typing by sleeping
                        # for word in formatted_text.split(" "):
                        #     yield word + " "
                        #     time.sleep(0.01)

                    elif "verifier" in response["solver_name"]:
                        # Extract response details
                        output_text = response["output"]

                        # Get detail
                        details = output_text.get("detail", None)
                        if details is None:
                            detail_text = "The verifier did not provide any detail. Please use other verifiers for more information."
                        else:
                            detail_text = ""

                            # Apply color to the claim based on factuality
                            claims=0
                            false_claims = 0
                            true_claims = 0
                            for i, detail in enumerate(details):
                                if detail.get("factuality", None) is not None:
                                    claim=detail.get("claim", "")
                                    if detail.get("factuality", None) == -1:
                                        detail_text += f'##### :red[{str(i+1) + ". " + extract_text(claim)}]'
                                        detail_text += "\n"
                                        claims += 1
                                        false_claims += 1
                                    elif detail.get("factuality", None) == 1:
                                        detail_text += f'##### :green[{str(i+1) + ". " + extract_text(claim)}]'
                                        detail_text += "\n"
                                        claims += 1
                                        true_claims += 1
                                    else:
                                        detail_text += f'##### :yellow[{str(i+1) + ". " + extract_text(claim)}]'
                                        detail_text += "\n"
                                        claims += 1
                                else:
                                    st.error("Factuality not found in the verifier output.")

                                # Add error information
                                if detail.get("error", None) is not "None":
                                    detail_text += f"- **Error**: {detail.get('error', '')}"
                                    detail_text += "\n"

                                # Add reasoning information
                                if detail.get("reasoning", None) is not "None":
                                    detail_text += f"- **Reasoning**: {detail.get('reasoning', '')}"
                                    detail_text += "\n"
                                
                                # Add correction
                                if detail.get("correction", None) is not "":
                                    detail_text += f"- **Correction**: {detail.get('correction', '')}"
                                    detail_text += "\n"

                                # Add evidence
                                if detail.get("evidence", None) is not "":
                                    evidence_text = ""
                                    for evidence in detail.get("evidences", []):
                                        evidence_text += f"  - {evidence[1]}"
                                        evidence_text += "\n"
                                    detail_text += f"- **Evidence**:\n{evidence_text}"

                                        
                        # Generate formatted text with the overall factuality in Markdown format
                        formatted_text = "### Factuality Detail\n"
                        formatted_text += "Factuality of each claim is color-coded (red:[red means false], green:[green means true], yellow:[yellow means unknown]) as follows:\n"
                        formatted_text += f"{detail_text}\n"
                        formatted_text += "\n"

                        # Get the number of true and false claims
                        with col2:
                            metric_card(label="Supported Claims", value=true_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
                            metric_card(label="Conflicted Claims", value=false_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
                        
                        # Get overall factuality (label)
                        overall_factuality = output_text.get("label", "Unknown")
                        with col2:
                            with st.container():
                                if overall_factuality == True:
                                    metric_card(label="Overall Factuality", value="True", background_color="#D4EDDA", border_left_color="#28A745")
                                elif overall_factuality == False:
                                    metric_card(label="Overall Factuality", value="False", background_color="#F8D7DA", border_left_color="#DC3545")

                        # Get overall credibility (score)
                        overall_credibility = true_claims / claims if claims > 0 else 0
                        with col2:
                            if overall_credibility > 0.75 and overall_credibility <= 1:
                                # Green background
                                metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#D4EDDA", border_left_color="#28A745")
                            elif overall_credibility > 0.25 and overall_credibility <= 0.75:
                                # Yellow background
                                metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#FFF3CD", border_left_color="#FFC107")
                            else:
                                # Red background
                                metric_card(label="Overall Credibility", value=f"{overall_credibility:.2%}", background_color="#F8D7DA", border_left_color="#DC3545")

                        # Yield each word with a space and simulate typing by sleeping
                        for word in formatted_text.split(" "):
                            yield word + " "
                            time.sleep(0.01)

            st.write_stream(process_stream(response))