File size: 4,582 Bytes
8360ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import json
from typing import Any
from openfactcheck.core.state import FactCheckerState
from openfactcheck.core.solver import StandardTaskSolver, Solver
from .factcheckgpt_utils.prompt import VERIFY_PROMPT
from .factcheckgpt_utils.openai_api import gpt
from .factcheckgpt_utils.data_util import save_to_file
from .factcheckgpt_utils.prompt import IDENTIFY_STANCE_PROMPT, IDENTIFY_STANCE_PROMPT_FUNC
from .factcheckgpt_utils.nli import nli_infer
@Solver.register("factcheckgpt_verifier", "claims_with_evidences", "label")
class FactCheckGPTVerifier(StandardTaskSolver):
def __init__(self, args):
super().__init__(args)
self.stance_model = args.get("stance_model", "gpt-3.5-turbo")
self.num_retries = self.global_config.get("num_retries", 3)
# self.system_role = args.get("system_role", "You are a helpful factchecker assistant.")
self.system_role = "You are a helpful factchecker assistant."
self.verify_retries = args.get("verify_retries", 3)
self.stance_map = {
1: "support",
-1: "refute",
0: "irrelevant"
}
def verify_by_stance(
self, claim: str,
evidences: list[str],
) -> Any:
labels = []
for evidence in evidences:
labels.append(self.stance(evidence, claim))
# based on stances of evidence, determine the true/false claim by rules
# if there is one evidence supports, we assume it is correct
if 1 in labels:
return 1
# if there isn't support, but refute and irrelevant, we regard as false
elif -1 in labels:
return -1
else:
# all irrelevant
return 0
def identify_stance_gpt(self, evidence, claim):
user_input = IDENTIFY_STANCE_PROMPT_FUNC.format(claim=claim, evidence=evidence)
r = gpt(
user_input,
model=self.stance_model,
system_role=self.system_role,
num_retries=self.num_retries
)
label = 0
try:
label = eval(r)
except Exception as e:
print(f"An unexpected error occurred: {e}.")
return label
def stance(self, evidence, claim, model="gpt-3.5-turbo"):
"""input: a claim and an evidence
output: label in [support, refute, irrelevant]"""
label = 0
if self.stance_model == "nli":
label = nli_infer(premise=evidence, hypothesis=claim)
elif "gpt" in self.stance_model:
label = self.identify_stance_gpt(evidence, claim)
else:
print("Check the model argument, choose either gpt or nli model")
return label
def verify_claim(self, claim: str, evidences: list[str]) -> dict[str, Any]:
results = None
user_input = VERIFY_PROMPT.format(claim=claim, evidence=evidences)
r = ''
for _ in range(self.verify_retries):
r = gpt(
user_input,
model=self.stance_model,
system_role=self.system_role,
num_retries=self.num_retries,
)
try:
results = eval(r)
break
except Exception as e:
try:
results = json.loads(r)
except Exception as e:
print(f"An unexpected error occurred to parse json {r}: {e}.")
save_to_file(r, "verification_error.txt")
print(f"An unexpected error occurred to eval {r}: {e}.")
if isinstance(results, dict):
return results
else:
print(f"Error output {r}. It does not output a dict, return factual label by stance aggregation.")
factual_label = self.verify_by_stance(claim, evidences)
results = {
"reasoning": "",
"error": "",
"correction": "",
"factuality": factual_label
}
return results
def __call__(self, state: FactCheckerState, *args, **kwargs):
claims_with_evidences = state.get(self.input_name)
results = []
for claim, evidences in claims_with_evidences.items():
result = self.verify_claim(claim, [x[1] for x in evidences])
result["claim"] = claim
result["evidences"] = evidences
results.append(result)
state.set(self.output_name, all([x['factuality'] > 0 for x in results]))
state.set("detail", results)
return True, state
|