Spaces:
Runtime error
Runtime error
harshvardhan96
commited on
Commit
·
4a32822
1
Parent(s):
998eb62
created app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import tensorflow.compat.v1 as tf
|
3 |
+
tf.disable_v2_behavior()
|
4 |
+
#loading the saved parameters
|
5 |
+
def load_params():
|
6 |
+
with open('/kaggle/input/latest-data/params.p', mode='rb') as in_file:
|
7 |
+
return pickle.load(in_file)
|
8 |
+
|
9 |
+
def load_preprocess():
|
10 |
+
with open('/kaggle/input/latest-data/preprocess.p', mode='rb') as in_file:
|
11 |
+
return pickle.load(in_file)
|
12 |
+
|
13 |
+
#getting the source and target vocabuaries
|
14 |
+
_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = load_preprocess()
|
15 |
+
|
16 |
+
load_path = load_params()
|
17 |
+
print("Loaded path:", load_path)
|
18 |
+
print(type(load_path))
|
19 |
+
|
20 |
+
batch_size = 30
|
21 |
+
|
22 |
+
#converting the words to vectors of integers
|
23 |
+
def word_to_seq(word, vocab_to_int):
|
24 |
+
results = []
|
25 |
+
for word in list(word):
|
26 |
+
if word in vocab_to_int:
|
27 |
+
results.append(vocab_to_int[word])
|
28 |
+
else:
|
29 |
+
results.append(vocab_to_int['<UNK>'])
|
30 |
+
|
31 |
+
return results
|
32 |
+
|
33 |
+
#taking user input for prediction
|
34 |
+
print("\n Enter word to be transliterated:")
|
35 |
+
transliterate_word = input().lower()
|
36 |
+
|
37 |
+
transliterate_word = word_to_seq(transliterate_word, source_vocab_to_int)
|
38 |
+
|
39 |
+
#initialising the graph
|
40 |
+
loaded_graph = tf.Graph()
|
41 |
+
|
42 |
+
#initialising the session
|
43 |
+
tf.compat.v1.Session()
|
44 |
+
# with tf.Session(graph=loaded_graph) as sess:
|
45 |
+
with tf.compat.v1.Session(graph=loaded_graph) as sess:
|
46 |
+
|
47 |
+
# Load saved model
|
48 |
+
loader = tf.train.import_meta_graph("/kaggle/input/latest-data/dev.meta")
|
49 |
+
|
50 |
+
# tf.train.Saver.restore(sess,load_path)
|
51 |
+
loader.restore(sess, "/kaggle/input/latest-data/dev")
|
52 |
+
|
53 |
+
#providing placeholder names from the loaded graph
|
54 |
+
input_data = loaded_graph.get_tensor_by_name('input:0')
|
55 |
+
logits = loaded_graph.get_tensor_by_name('predictions:0')
|
56 |
+
target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')
|
57 |
+
keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
|
58 |
+
|
59 |
+
#transliterating the given word
|
60 |
+
transliterate_logits = sess.run(logits, {input_data: [transliterate_word]*batch_size,
|
61 |
+
target_sequence_length: [len(transliterate_word)]*batch_size,
|
62 |
+
keep_prob: 1.0})[0]
|
63 |
+
|
64 |
+
print('Input')
|
65 |
+
print(' Word Ids: {}'.format([i for i in transliterate_word]))
|
66 |
+
print(' English Word: {}'.format([source_int_to_vocab[i] for i in transliterate_word]))
|
67 |
+
|
68 |
+
print('\nPrediction')
|
69 |
+
print(' Word Id: {}'.format([i for i in transliterate_logits]))
|
70 |
+
|
71 |
+
#showing the output
|
72 |
+
output = ""
|
73 |
+
for i in transliterate_logits:
|
74 |
+
if target_int_to_vocab[i]!= '<EOS>':
|
75 |
+
output = output + target_int_to_vocab[i]
|
76 |
+
print(' Hindi Word: {}'.format(output))
|