|
""" |
|
Lovasz-Softmax and Jaccard hinge loss in PyTorch |
|
Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License) |
|
https://github.com/bermanmaxim/LovaszSoftmax/blob/master/pytorch/lovasz_losses.py |
|
""" |
|
|
|
from __future__ import print_function, division |
|
|
|
import torch |
|
from torch.autograd import Variable |
|
import torch.nn.functional as F |
|
import numpy as np |
|
try: |
|
from itertools import ifilterfalse |
|
except ImportError: |
|
from itertools import filterfalse as ifilterfalse |
|
|
|
|
|
def lovasz_grad(gt_sorted): |
|
""" |
|
Computes gradient of the Lovasz extension w.r.t sorted errors |
|
See Alg. 1 in paper |
|
""" |
|
p = len(gt_sorted) |
|
gts = gt_sorted.sum() |
|
intersection = gts - gt_sorted.float().cumsum(0) |
|
union = gts + (1 - gt_sorted).float().cumsum(0) |
|
jaccard = 1. - intersection / union |
|
if p > 1: |
|
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] |
|
return jaccard |
|
|
|
|
|
def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): |
|
""" |
|
IoU for foreground class |
|
binary: 1 foreground, 0 background |
|
""" |
|
if not per_image: |
|
preds, labels = (preds,), (labels,) |
|
ious = [] |
|
for pred, label in zip(preds, labels): |
|
intersection = ((label == 1) & (pred == 1)).sum() |
|
union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() |
|
if not union: |
|
iou = EMPTY |
|
else: |
|
iou = float(intersection) / float(union) |
|
ious.append(iou) |
|
iou = mean(ious) |
|
return 100 * iou |
|
|
|
|
|
def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): |
|
""" |
|
Array of IoU for each (non ignored) class |
|
""" |
|
if not per_image: |
|
preds, labels = (preds,), (labels,) |
|
ious = [] |
|
for pred, label in zip(preds, labels): |
|
iou = [] |
|
for i in range(C): |
|
if i != ignore: |
|
intersection = ((label == i) & (pred == i)).sum() |
|
union = ((label == i) | ((pred == i) & (label != ignore))).sum() |
|
if not union: |
|
iou.append(EMPTY) |
|
else: |
|
iou.append(float(intersection) / float(union)) |
|
ious.append(iou) |
|
ious = [mean(iou) for iou in zip(*ious)] |
|
return 100 * np.array(ious) |
|
|
|
|
|
|
|
|
|
def lovasz_hinge(logits, labels, per_image=True, ignore=None): |
|
""" |
|
Binary Lovasz hinge loss |
|
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) |
|
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) |
|
per_image: compute the loss per image instead of per batch |
|
ignore: void class id |
|
""" |
|
if per_image: |
|
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore)) |
|
for log, lab in zip(logits, labels)) |
|
else: |
|
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) |
|
return loss |
|
|
|
|
|
def lovasz_hinge_flat(logits, labels): |
|
""" |
|
Binary Lovasz hinge loss |
|
logits: [P] Variable, logits at each prediction (between -\infty and +\infty) |
|
labels: [P] Tensor, binary ground truth labels (0 or 1) |
|
ignore: label to ignore |
|
""" |
|
if len(labels) == 0: |
|
|
|
return logits.sum() * 0. |
|
signs = 2. * labels.float() - 1. |
|
errors = (1. - logits * Variable(signs)) |
|
errors_sorted, perm = torch.sort(errors, dim=0, descending=True) |
|
perm = perm.data |
|
gt_sorted = labels[perm] |
|
grad = lovasz_grad(gt_sorted) |
|
loss = torch.dot(F.relu(errors_sorted), Variable(grad)) |
|
return loss |
|
|
|
|
|
def flatten_binary_scores(scores, labels, ignore=None): |
|
""" |
|
Flattens predictions in the batch (binary case) |
|
Remove labels equal to 'ignore' |
|
""" |
|
scores = scores.view(-1) |
|
labels = labels.view(-1) |
|
if ignore is None: |
|
return scores, labels |
|
valid = (labels != ignore) |
|
vscores = scores[valid] |
|
vlabels = labels[valid] |
|
return vscores, vlabels |
|
|
|
|
|
class StableBCELoss(torch.nn.modules.Module): |
|
def __init__(self): |
|
super(StableBCELoss, self).__init__() |
|
def forward(self, input, target): |
|
neg_abs = - input.abs() |
|
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() |
|
return loss.mean() |
|
|
|
|
|
def binary_xloss(logits, labels, ignore=None): |
|
""" |
|
Binary Cross entropy loss |
|
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) |
|
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) |
|
ignore: void class id |
|
""" |
|
logits, labels = flatten_binary_scores(logits, labels, ignore) |
|
loss = StableBCELoss()(logits, Variable(labels.float())) |
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None): |
|
""" |
|
Multi-class Lovasz-Softmax loss |
|
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1). |
|
Interpreted as binary (sigmoid) output with outputs of size [B, H, W]. |
|
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) |
|
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. |
|
per_image: compute the loss per image instead of per batch |
|
ignore: void class labels |
|
""" |
|
if per_image: |
|
loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes) |
|
for prob, lab in zip(probas, labels)) |
|
else: |
|
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes) |
|
return loss |
|
|
|
|
|
def lovasz_softmax_flat(probas, labels, classes='present'): |
|
""" |
|
Multi-class Lovasz-Softmax loss |
|
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) |
|
labels: [P] Tensor, ground truth labels (between 0 and C - 1) |
|
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. |
|
""" |
|
if probas.numel() == 0: |
|
|
|
return probas * 0. |
|
C = probas.size(1) |
|
losses = [] |
|
class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes |
|
for c in class_to_sum: |
|
fg = (labels == c).float() |
|
if (classes is 'present' and fg.sum() == 0): |
|
continue |
|
if C == 1: |
|
if len(classes) > 1: |
|
raise ValueError('Sigmoid output possible only with 1 class') |
|
class_pred = probas[:, 0] |
|
else: |
|
class_pred = probas[:, c] |
|
errors = (Variable(fg) - class_pred).abs() |
|
errors_sorted, perm = torch.sort(errors, 0, descending=True) |
|
perm = perm.data |
|
fg_sorted = fg[perm] |
|
losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))) |
|
return mean(losses) |
|
|
|
|
|
def flatten_probas(probas, labels, ignore=None): |
|
""" |
|
Flattens predictions in the batch |
|
""" |
|
if probas.dim() == 3: |
|
|
|
B, H, W = probas.size() |
|
probas = probas.view(B, 1, H, W) |
|
B, C, H, W = probas.size() |
|
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) |
|
labels = labels.view(-1) |
|
if ignore is None: |
|
return probas, labels |
|
valid = (labels != ignore) |
|
vprobas = probas[valid.nonzero().squeeze()] |
|
vlabels = labels[valid] |
|
return vprobas, vlabels |
|
|
|
def xloss(logits, labels, ignore=None): |
|
""" |
|
Cross entropy loss |
|
""" |
|
return F.cross_entropy(logits, Variable(labels), ignore_index=255) |
|
|
|
|
|
|
|
def isnan(x): |
|
return x != x |
|
|
|
|
|
def mean(l, ignore_nan=False, empty=0): |
|
""" |
|
nanmean compatible with generators. |
|
""" |
|
l = iter(l) |
|
if ignore_nan: |
|
l = ifilterfalse(isnan, l) |
|
try: |
|
n = 1 |
|
acc = next(l) |
|
except StopIteration: |
|
if empty == 'raise': |
|
raise ValueError('Empty mean') |
|
return empty |
|
for n, v in enumerate(l, 2): |
|
acc += v |
|
if n == 1: |
|
return acc |
|
return acc / n |