|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from . import mix_transformer |
|
from mmcv.cnn import ConvModule |
|
from .modules import num_parallel |
|
|
|
|
|
class MLP(nn.Module): |
|
""" |
|
Linear Embedding |
|
""" |
|
def __init__(self, input_dim=2048, embed_dim=768): |
|
super().__init__() |
|
self.proj = nn.Linear(input_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2).contiguous() |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class SegFormerHead(nn.Module): |
|
""" |
|
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers |
|
""" |
|
def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, num_classes=20, **kwargs): |
|
super(SegFormerHead, self).__init__() |
|
self.in_channels = in_channels |
|
self.num_classes = num_classes |
|
assert len(feature_strides) == len(self.in_channels) |
|
assert min(feature_strides) == feature_strides[0] |
|
self.feature_strides = feature_strides |
|
|
|
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels |
|
|
|
|
|
|
|
|
|
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim) |
|
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim) |
|
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim) |
|
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim) |
|
self.dropout = nn.Dropout2d(0.1) |
|
|
|
self.linear_fuse = ConvModule( |
|
in_channels=embedding_dim*4, |
|
out_channels=embedding_dim, |
|
kernel_size=1, |
|
norm_cfg=dict(type='BN', requires_grad=True) |
|
) |
|
|
|
self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1) |
|
|
|
def forward(self, x): |
|
c1, c2, c3, c4 = x |
|
|
|
|
|
n, _, h, w = c4.shape |
|
|
|
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous() |
|
_c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False) |
|
|
|
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous() |
|
_c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False) |
|
|
|
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous() |
|
_c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False) |
|
|
|
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous() |
|
|
|
_c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) |
|
|
|
x = self.dropout(_c) |
|
x = self.linear_pred(x) |
|
|
|
return x |
|
|
|
|
|
class SegFormer(nn.Module): |
|
def __init__(self, backbone, config, num_classes=20, embedding_dim=256, pretrained=True): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.embedding_dim = embedding_dim |
|
self.feature_strides = [4, 8, 16, 32] |
|
self.num_parallel = num_parallel |
|
|
|
|
|
|
|
self.encoder = getattr(mix_transformer, backbone)() |
|
self.in_channels = self.encoder.embed_dims |
|
|
|
if pretrained: |
|
state_dict = torch.load(config.root_dir+'/data/pytorch-weight/' + backbone + '.pth') |
|
state_dict.pop('head.weight') |
|
state_dict.pop('head.bias') |
|
state_dict = expand_state_dict(self.encoder.state_dict(), state_dict, self.num_parallel) |
|
self.encoder.load_state_dict(state_dict, strict=True) |
|
|
|
self.decoder = SegFormerHead(feature_strides=self.feature_strides, in_channels=self.in_channels, |
|
embedding_dim=self.embedding_dim, num_classes=self.num_classes) |
|
|
|
def get_params(self): |
|
param_groups = [[], [], []] |
|
for name, param in list(self.encoder.named_parameters()): |
|
if "norm" in name: |
|
param_groups[1].append(param) |
|
else: |
|
param_groups[0].append(param) |
|
for param in list(self.decoder.parameters()): |
|
param_groups[2].append(param) |
|
return param_groups |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, data, get_sup_loss = False, gt = None, criterion = None): |
|
b, c, h, w = data[0].shape |
|
data = self.encoder(data) |
|
pred = self.decoder(data[0]) |
|
pred = F.interpolate(pred, size=(h, w), mode='bilinear', align_corners=True) |
|
if not self.training: |
|
return pred |
|
else: |
|
if get_sup_loss: |
|
sup_loss = self.get_sup_loss(pred, gt, criterion) |
|
return pred, sup_loss |
|
else: |
|
return pred |
|
|
|
def get_sup_loss(self, pred, gt, criterion): |
|
pred = pred[:gt.shape[0]] |
|
return criterion(pred, gt) |
|
|
|
|
|
def expand_state_dict(model_dict, state_dict, num_parallel): |
|
model_dict_keys = model_dict.keys() |
|
state_dict_keys = state_dict.keys() |
|
for model_dict_key in model_dict_keys: |
|
model_dict_key_re = model_dict_key.replace('module.', '') |
|
if model_dict_key_re in state_dict_keys: |
|
model_dict[model_dict_key] = state_dict[model_dict_key_re] |
|
for i in range(num_parallel): |
|
ln = '.ln_%d' % i |
|
replace = True if ln in model_dict_key_re else False |
|
model_dict_key_re = model_dict_key_re.replace(ln, '') |
|
if replace and model_dict_key_re in state_dict_keys: |
|
model_dict[model_dict_key] = state_dict[model_dict_key_re] |
|
return model_dict |
|
|
|
|
|
if __name__=="__main__": |
|
|
|
|
|
pretrained_weights = torch.load('pretrained/mit_b1.pth') |
|
wetr = SegFormer('mit_b1', num_classes=20, embedding_dim=256, pretrained=True).cuda() |
|
wetr.get_param_groupsv() |
|
dummy_input = torch.rand(2,3,512,512).cuda() |
|
wetr(dummy_input) |