|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
import torch |
|
|
|
num_parallel = 2 |
|
|
|
|
|
class LinearFuse(nn.Module): |
|
def __init__(self, ratio): |
|
super(LinearFuse, self).__init__() |
|
self.ratio = ratio |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
x0, x1 = torch.zeros_like(x[0]), torch.zeros_like(x[1]) |
|
x0 = self.ratio*x[0] + (1-self.ratio)*x[1] |
|
x1 = (1-self.ratio)*x[0] + self.ratio*x[1] |
|
return [x0, x1] |
|
|
|
|
|
class ModuleParallel(nn.Module): |
|
def __init__(self, module): |
|
super(ModuleParallel, self).__init__() |
|
self.module = module |
|
|
|
def forward(self, x_parallel): |
|
return [self.module(x) for x in x_parallel] |
|
|
|
|
|
class LayerNormParallel(nn.Module): |
|
def __init__(self, num_features): |
|
super(LayerNormParallel, self).__init__() |
|
for i in range(num_parallel): |
|
setattr(self, 'ln_' + str(i), nn.LayerNorm(num_features, eps=1e-6)) |
|
|
|
def forward(self, x_parallel): |
|
return [getattr(self, 'ln_' + str(i))(x) for i, x in enumerate(x_parallel)] |