File size: 7,289 Bytes
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a805467
 
 
 
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22da29
b2d39bc
 
 
 
 
 
 
 
 
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
b2d39bc
 
 
 
 
 
d4ebf73
 
b2d39bc
d4ebf73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
import os
import random
import pickle as pkl
from models.segmentation_models.linearfusemaskedconsmixbatch.segformer import LinearFusionMaskedConsistencyMixBatch
from models.segmentation_models.linearfuse.segformer import WeTrLinearFusion
from datasets.preprocessors import RGBDValPre
from utils.constants import Constants as C

class Arguments:
    def __init__(self, ratio):
        self.ratio = ratio
        self.masking_ratio = 1.0

colors = pkl.load(open('./colors.pkl', 'rb'))
args = Arguments(ratio = 0.8)

mtmodel = WeTrLinearFusion("mit_b2", args, num_classes=13, pretrained=False)
mtmodelpath = './checkpoints/sid_1-500_mtteacher.pth'
mtmodel.load_state_dict(torch.load(mtmodelpath,  map_location=torch.device('cpu')))
mtmodel.eval()

m3lmodel = LinearFusionMaskedConsistencyMixBatch("mit_b2", args, num_classes=13, pretrained=False)
m3lmodelpath = './checkpoints/sid_1-500_m3lteacher.pth'
m3lmodel.load_state_dict(torch.load(m3lmodelpath,  map_location=torch.device('cpu')))
m3lmodel.eval()


class MaskStudentTeacher(nn.Module):
    
    def __init__(self, student, teacher, ema_alpha, mode = 'train'):
        super(MaskStudentTeacher, self).__init__()
        self.student = student
        self.teacher = teacher
        self.teacher = self._detach_teacher(self.teacher)
        self.ema_alpha = ema_alpha
        self.mode = mode
    def forward(self, data, student = True, teacher = True, mask = False, range_batches_to_mask = None, **kwargs):
        ret = []
        if student:
            if self.mode == 'train':
                ret.append(self.student(data, mask = mask, range_batches_to_mask = range_batches_to_mask, **kwargs))
            elif self.mode == 'val':
                ret.append(self.student(data, mask = False, **kwargs))
            else:
                raise Exception('Mode not supported')
        if teacher:
            ret.append(self.teacher(data, mask = False,  **kwargs)) #Not computing loss for teacher ever but passing the results as if loss was also returned
        return ret
    def _detach_teacher(self, model):
        for param in model.parameters():
            param.detach_()
        return model
    def update_teacher_models(self, global_step):
        alpha = min(1 - 1 / (global_step + 1), self.ema_alpha)
        for ema_param, param in zip(self.teacher.parameters(), self.student.parameters()):
            ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
        return
    def copy_student_to_teacher(self):
        for ema_param, param in zip(self.teacher.parameters(), self.student.parameters()):
            ema_param.data.mul_(0).add_(param.data)
        return
    def get_params(self):
        student_params = self.student.get_params()
        teacher_params = self.teacher.get_params()
        return student_params
    
def preprocess_data(rgb, depth, dataset_settings):
    #RGB: np.array, RGB
    #Depth: np.array, minmax normalized, *255
    preprocess = RGBDValPre(C.pytorch_mean, C.pytorch_std, dataset_settings)
    rgb, depth = preprocess(rgb, depth)
    if rgb is not None:
        rgb = torch.from_numpy(np.ascontiguousarray(rgb)).float()
    if depth is not None:
        depth = torch.from_numpy(np.ascontiguousarray(depth)).float()
    return rgb, depth

def visualize(colors, pred, num_classes, dataset_settings):
    pred = pred.transpose(1, 2, 0)
    predvis = np.zeros((dataset_settings['orig_height'], dataset_settings['orig_width'], 3))
    for i in range(num_classes):
        color = colors[i]
        predvis = np.where(pred == i, color, predvis)
    predvis /= 255.0
    predvis = predvis[:,:,::-1]
    return predvis

def predict(rgb, depth, check):
    dataset_settings = {}
    dataset_settings['image_height'], dataset_settings['image_width'] = 540, 540
    dataset_settings['orig_height'], dataset_settings['orig_width'] = 540,540
    
    rgb, depth = preprocess_data(rgb, depth, dataset_settings)
    if rgb is not None:
        rgb = rgb.unsqueeze(dim = 0)
    if depth is not None:
        depth = depth.unsqueeze(dim = 0)
    ret = [None, None, './classcolors.png']
    if "Mean Teacher" in check:
        if rgb is None:
            rgb = torch.zeros_like(depth)
        if depth is None:
            depth = torch.zeros_like(rgb)
        scores = mtmodel([rgb, depth])[2]
        scores = torch.nn.functional.interpolate(scores, size = (dataset_settings["orig_height"], dataset_settings["orig_width"]), mode = 'bilinear', align_corners = True)
        prob = scores.detach()
        _, pred = torch.max(prob, dim=1)
        pred = pred.numpy()
        predvis = visualize(colors, pred, num_classes=13, dataset_settings=dataset_settings)
        ret[0] = predvis
    if "M3L" in check:
        mask = False
        masking_branch = None
        if rgb is None:
            mask = True
            masking_branch = 0
        if depth is None:
            mask = True
            masking_branch = 1
        scores = m3lmodel([rgb, depth], mask = mask, masking_branch = masking_branch)[2]
        scores = torch.nn.functional.interpolate(scores, size = (dataset_settings["orig_height"], dataset_settings["orig_width"]), mode = 'bilinear', align_corners = True)
        prob = scores.detach()
        _, pred = torch.max(prob, dim=1)
        pred = pred.numpy()
        predvis = visualize(colors, pred, num_classes=13, dataset_settings=dataset_settings)
        ret[1] = predvis
    
    return ret

imgs = os.listdir('./examples/rgb')
random.shuffle(imgs)
examples = []
for img in imgs:
    examples.append([
        './examples/rgb/'+img, './examples/depth/'+img, ["M3L", "Mean Teacher"]
    ])

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    with gr.Row():
        gr.Markdown(
        """
        <center><h2>M3L</h2></center>
        <center>Multi-modal teacher for Masked Modality Learning</center>
        <br>
        <center>Demo to visualize predictions from the Linear Fusion model trained with the vanilla Mean Teacher and the <a href='https://harshm121.github.io/projects/m3l.html'>M3L</a> framework when trained with 0.2% (98) labels. </center>
        """
        )
    with gr.Row():
        rgbinput = gr.Image(label="RGB Input").style(height=256, width=256)
        depthinput = gr.Image(label="Depth Input").style(height=256, width=256)
    with gr.Row():
        modelcheck = gr.CheckboxGroup(["Mean Teacher", "M3L"], label="Predictions from", info="Predict using model trained with:")
    with gr.Row():
        submit_btn = gr.Button("Submit")
    with gr.Row():
        mtoutput = gr.Image(label="Mean Teacher Output").style(height=384, width=384)
        m3loutput = gr.Image(label="M3L Output").style(height=384, width=384)
        classnameouptut = gr.Image(label="Classes").style(height=384, width=384)
    with gr.Row():
        examplesRow = gr.Examples(examples=examples, examples_per_page=10, inputs=[rgbinput, depthinput, modelcheck])
    with gr.Row():
        gr.Markdown(
        """
        Read more about [M3L](https://harshm121.github.io/projects/m3l.html)! 
        """
        )
    submit_btn.click(fn = predict, inputs = [rgbinput, depthinput, modelcheck], outputs = [mtoutput, m3loutput, classnameouptut])

demo.queue(concurrency_count=3)
demo.launch()