File size: 10,073 Bytes
d4ebf73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2019-03-04 20:52
# @Author : Jingbo Wang
# @E-mail : [email protected] & [email protected]
# @File : conv_2.5d.py
# @Software: PyCharm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
def _ntuple(n):
def parse(x):
if isinstance(x, list) or isinstance(x, tuple):
return x
return tuple([x]*n)
return parse
_pair = _ntuple(2)
class Conv2_5D_disp(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True,
pixel_size=16):
super(Conv2_5D_disp, self).__init__()
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.kernel_size_prod = self.kernel_size[0] * self.kernel_size[1]
self.stride = stride
self.padding = padding
self.dilation = dilation
self.pixel_size = pixel_size
assert self.kernel_size_prod % 2 == 1
self.weight_0 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_1 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_2 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
def forward(self, x, disp, camera_params):
N, C, H, W = x.size(0), x.size(1), x.size(2), x.size(3)
out_H = (H + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) // self.stride[0] + 1
out_W = (W + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) // self.stride[1] + 1
intrinsic, extrinsic = camera_params['intrinsic'], camera_params['extrinsic']
x_col = F.unfold(x, self.kernel_size, dilation=self.dilation, padding=self.padding,
stride=self.stride) # (N, C*kh*kw, out_H*out_W)
x_col = x_col.view(N, C, self.kernel_size_prod, out_H * out_W)
disp_col = F.unfold(disp, self.kernel_size, dilation=self.dilation, padding=self.padding,
stride=self.stride) # (N, kh*kw, out_H*out_W)
valid_mask = 1 - disp_col.eq(0.).to(torch.float32)
valid_mask *= valid_mask[:, self.kernel_size_prod // 2, :].view(N, 1, out_H * out_W)
disp_col *= valid_mask
depth_col = (extrinsic['baseline'] * intrinsic['fx']).view(N, 1, 1).cuda() / torch.clamp(disp_col, 0.01, 256)
valid_mask = valid_mask.view(N, 1, self.kernel_size_prod, out_H * out_W)
center_depth = depth_col[:, self.kernel_size_prod // 2, :].view(N, 1, out_H * out_W)
grid_range = self.pixel_size * self.dilation[0] * center_depth / intrinsic['fx'].view(N, 1, 1).cuda()
mask_0 = torch.abs(depth_col - (center_depth + grid_range)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(
torch.float32)
mask_1 = torch.abs(depth_col - (center_depth)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(torch.float32)
mask_1 = (mask_1 + 1 - valid_mask).clamp(min=0., max=1.)
mask_2 = torch.abs(depth_col - (center_depth - grid_range)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(
torch.float32)
output = torch.matmul(self.weight_0.view(-1, C * self.kernel_size_prod),
(x_col * mask_0).view(N, C * self.kernel_size_prod, out_H * out_W))
output += torch.matmul(self.weight_1.view(-1, C * self.kernel_size_prod),
(x_col * mask_1).view(N, C * self.kernel_size_prod, out_H * out_W))
output += torch.matmul(self.weight_2.view(-1, C * self.kernel_size_prod),
(x_col * mask_2).view(N, C * self.kernel_size_prod, out_H * out_W))
output = output.view(N, -1, out_H, out_W)
if self.bias:
output += self.bias.view(1, -1, 1, 1)
return output
def extra_repr(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.bias is None:
s += ', bias=False'
return s.format(**self.__dict__)
class Conv2_5D_depth(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=False,
pixel_size=1, is_graph=False):
super(Conv2_5D_depth, self).__init__()
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.kernel_size_prod = self.kernel_size[0] * self.kernel_size[1]
self.stride = stride
self.padding = padding
self.dilation = dilation
self.pixel_size = pixel_size
assert self.kernel_size_prod % 2 == 1
self.is_graph = is_graph
if self.is_graph:
self.weight_0 = Parameter(torch.Tensor(out_channels, 1, *kernel_size))
self.weight_1 = Parameter(torch.Tensor(out_channels, 1, *kernel_size))
self.weight_2 = Parameter(torch.Tensor(out_channels, 1, *kernel_size))
else:
self.weight_0 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_1 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_2 = Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
def forward(self, x, depth, camera_params):
# if self.is_graph:
# weight_0 = self.weight_0.expand(self.out_channels, self.in_channels, *self.kernel_size).contiguous()
# weight_1 = self.weight_1.expand(self.out_channels, self.in_channels, *self.kernel_size).contiguous()
# weight_2 = self.weight_2.expand(self.out_channels, self.in_channels, *self.kernel_size).contiguous()
# else:
# weight_0 = self.weight_0
# weight_1 = self.weight_1
# weight_2 = self.weight_2
N, C, H, W = x.size(0), x.size(1), x.size(2), x.size(3)
out_H = (H + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) // self.stride[0] + 1
out_W = (W + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) // self.stride[1] + 1
intrinsic = camera_params['intrinsic']
x_col = F.unfold(x, self.kernel_size, dilation=self.dilation, padding=self.padding,
stride=self.stride) # N*(C*kh*kw)*(out_H*out_W)
x_col = x_col.view(N, C, self.kernel_size_prod, out_H * out_W)
depth_col = F.unfold(depth, self.kernel_size, dilation=self.dilation, padding=self.padding,
stride=self.stride) # N*(kh*kw)*(out_H*out_W)
center_depth = depth_col[:, self.kernel_size_prod // 2, :]
#print(depth_col.size())
center_depth = center_depth.view(N, 1, out_H * out_W)
# grid_range = self.pixel_size * center_depth / (intrinsic['fx'].view(N,1,1) * camera_params['scale'].view(N,1,1))
grid_range = self.pixel_size * center_depth / intrinsic['fx'].cuda().view(N, 1, 1)
mask_0 = torch.abs(depth_col - (center_depth + grid_range)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(
torch.float32)
mask_1 = torch.abs(depth_col - (center_depth)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(torch.float32)
mask_2 = torch.abs(depth_col - (center_depth - grid_range)).le(grid_range / 2).view(N, 1, self.kernel_size_prod,
out_H * out_W).to(
torch.float32)
output = torch.matmul(self.weight_0.view(-1, C * self.kernel_size_prod),
(x_col * mask_0).view(N, C * self.kernel_size_prod, out_H * out_W))
output += torch.matmul(self.weight_1.view(-1, C * self.kernel_size_prod),
(x_col * mask_1).view(N, C * self.kernel_size_prod, out_H * out_W))
output += torch.matmul(self.weight_2.view(-1, C * self.kernel_size_prod),
(x_col * mask_2).view(N, C * self.kernel_size_prod, out_H * out_W))
output = output.view(N, -1, out_H, out_W)
if self.bias:
output += self.bias.view(1, -1, 1, 1)
return output
def extra_repr(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.bias is None:
s += ', bias=False'
return s.format(**self.__dict__)
|