File size: 12,334 Bytes
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# 2022.06.08-Changed for implementation of TokenFusion
#            Huawei Technologies Co., Ltd. <[email protected]>
import torch
import torch.nn as nn
import torch.nn.functional as F 
from . import mix_transformer
from mmcv.cnn import ConvModule
from .modules import num_parallel


class MLP(nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2).contiguous()
        x = self.proj(x)
        return x


class SegFormerHead(nn.Module):
    """
    SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
    """
    def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, num_classes=20, **kwargs):
        super(SegFormerHead, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        assert len(feature_strides) == len(self.in_channels)
        assert min(feature_strides) == feature_strides[0]
        self.feature_strides = feature_strides

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        #decoder_params = kwargs['decoder_params']
        #embedding_dim = decoder_params['embed_dim']

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
        self.dropout = nn.Dropout2d(0.1)

        self.linear_fuse = ConvModule(
            in_channels=embedding_dim*4,
            out_channels=embedding_dim,
            kernel_size=1,
            norm_cfg=dict(type='BN', requires_grad=True)
        )

        self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1)


    def forward(self, x):
        c1, c2, c3, c4 = x

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape

        _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous()
        _c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous()
        _c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous()
        _c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous()

        _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
        x = self.dropout(_c)
        x = self.linear_pred(x)

        return x


class SegFormerReconstructionHead(nn.Module):
    """
    SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
    """
    def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, **kwargs):
        super(SegFormerReconstructionHead, self).__init__()
        self.in_channels = in_channels
        assert len(feature_strides) == len(self.in_channels)
        assert min(feature_strides) == feature_strides[0]
        self.feature_strides = feature_strides

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        #decoder_params = kwargs['decoder_params']
        #embedding_dim = decoder_params['embed_dim']

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
        self.dropout = nn.Dropout2d(0.1)

        self.linear_fuse = ConvModule(
            in_channels=embedding_dim*4,
            out_channels=embedding_dim,
            kernel_size=1,
            norm_cfg=dict(type='BN', requires_grad=True)
        )

        self.linear_pred = nn.Conv2d(embedding_dim, 3, kernel_size=1)
        

    def forward(self, x):
        c1, c2, c3, c4 = x

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape

        _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous()
        _c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous()
        _c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous()
        _c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous()

        _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
        x = self.dropout(_c)
        x = self.linear_pred(x)
        return x

class LinearFusionMAEMaskedConsistency(nn.Module):
    def __init__(self, backbone, config, num_classes=20, embedding_dim=256, pretrained=True):
        super().__init__()
        self.num_classes = num_classes
        self.embedding_dim = embedding_dim
        self.feature_strides = [4, 8, 16, 32]
        self.num_parallel = num_parallel
        #self.in_channels = [32, 64, 160, 256]
        #self.in_channels = [64, 128, 320, 512]

        self.encoder = getattr(mix_transformer, backbone)(ratio = config.ratio, masking_ratio = config.masking_ratio)
        self.in_channels = self.encoder.embed_dims
        ## initilize encoder
        if pretrained:
            state_dict = torch.load(config.root_dir+'/data/pytorch-weight/' + backbone + '.pth')
            state_dict.pop('head.weight')
            state_dict.pop('head.bias')
            state_dict = expand_state_dict(self.encoder.state_dict(), state_dict, self.num_parallel)
            self.encoder.load_state_dict(state_dict, strict=True)
            print("Load pretrained weights from " + config.root_dir+'/data/pytorch-weight/' + backbone + '.pth')
        else:
            print("Train from scratch")
        self.decoder = SegFormerHead(feature_strides=self.feature_strides, in_channels=self.in_channels, 
                                     embedding_dim=self.embedding_dim, num_classes=self.num_classes)

        self.decoder_reconstruct_rgb = SegFormerReconstructionHead(feature_strides=self.feature_strides, in_channels=self.in_channels, 
                                     embedding_dim=self.embedding_dim, num_classes=self.num_classes)

        self.decoder_reconstruct_depth = SegFormerReconstructionHead(feature_strides=self.feature_strides, in_channels=self.in_channels, 
                                     embedding_dim=self.embedding_dim, num_classes=self.num_classes)

        self.alpha = nn.Parameter(torch.ones(self.num_parallel, requires_grad=True))
        self.register_parameter('alpha', self.alpha)
        self.ratio = config.ratio

    def get_params(self):
        param_groups = [[], [], []]
        for name, param in list(self.encoder.named_parameters()):
            if "norm" in name:
                param_groups[1].append(param)
            else:
                param_groups[0].append(param)
        for param in list(self.decoder.parameters()):
            param_groups[2].append(param)
        return param_groups

    # def get_params(self):
    #     param_groups = [[], []]
    #     for param in list(self.encoder.parameters()):
    #         param_groups[0].append(param)
    #     for param in list(self.decoder.parameters()):
    #         param_groups[1].append(param)
    #     return param_groups

    def forward(self, data, get_sup_loss = False, gt = None, criterion = None, mask = False, range_batches_to_mask = None):
        b, c, h, w = data[0].shape  #rgb is the 0th element
        if not mask:
            masking_branch = -1
        else:
            masking_branch = int((torch.rand(1)<0.5)*1)

        x = self.encoder(data, masking_branch, range_batches_to_mask)
        if self.training:
            #Reconstruction branch
            reconstruction_criterion = nn.MSELoss()

            encoder_output_0 = [x[0][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[0]))]
            pred_reconstruct_0 = self.decoder_reconstruct_rgb(encoder_output_0)
            pred_reconstruct_0 = F.interpolate(pred_reconstruct_0, size=(h, w), mode='bilinear', align_corners=True)
            encoder_output_1 = [x[1][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[1]))]
            pred_reconstruct_1 = self.decoder_reconstruct_depth(encoder_output_1)
            pred_reconstruct_1 = F.interpolate(pred_reconstruct_1, size=(h, w), mode='bilinear', align_corners=True)
            reconstruction_loss = (1 - masking_branch) * reconstruction_criterion(pred_reconstruct_0, data[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]]) 
            reconstruction_loss += masking_branch * reconstruction_criterion(pred_reconstruct_1, data[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
            # if masking_branch == 0:
            #     masked_encoder_output = [x[0][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[0]))]
            #     pred_reconstruct = self.decoder_reconstruct_rgb(masked_encoder_output)
            #     pred_reconstruct = F.interpolate(pred_reconstruct, size=(h, w), mode='bilinear', align_corners=True)
            # else:
            #     masked_encoder_output = [x[1][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[1]))]
            #     pred_reconstruct = self.decoder_reconstruct_depth(masked_encoder_output)
            #     pred_reconstruct = F.interpolate(pred_reconstruct, size=(h, w), mode='bilinear', align_corners=True)
            
            # reconstruction_criterion = nn.MSELoss()
            # reconstruction_loss = reconstruction_criterion(pred_reconstruct, data[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
        
        #Segmentation branch
        pred = [self.decoder(x[0]), self.decoder(x[1])]
        ens = 0
        alpha_soft = F.softmax(self.alpha)
        for l in range(self.num_parallel):
            ens += alpha_soft[l] * pred[l].detach()
        pred.append(ens)
        for i in range(len(pred)):
            pred[i] =  F.interpolate(pred[i], size=(h, w), mode='bilinear', align_corners=True)
        if not self.training:
            return pred
        else: # training
            if get_sup_loss:
                sup_loss = self.get_sup_loss(pred, gt, criterion)
                # print(sup_loss, l1, l1_loss, sup_loss + l1_loss, "losses")
                return pred, sup_loss, reconstruction_loss, masking_branch
            else:
                return pred, reconstruction_loss, masking_branch

    def get_sup_loss(self, pred, gt, criterion):
        sup_loss = 0
        for p in pred:
            p = p[:gt.shape[0]] #Getting loss for only those examples in batch where gt exists. Won't get sup loss for unlabeled data. 
            # soft_output = nn.LogSoftmax()(p)
            sup_loss += criterion(p, gt)
        return sup_loss / len(pred)


def expand_state_dict(model_dict, state_dict, num_parallel):
    model_dict_keys = model_dict.keys()
    state_dict_keys = state_dict.keys()
    for model_dict_key in model_dict_keys:
        model_dict_key_re = model_dict_key.replace('module.', '')
        if model_dict_key_re in state_dict_keys:
            model_dict[model_dict_key] = state_dict[model_dict_key_re]
        for i in range(num_parallel):
            ln = '.ln_%d' % i
            replace = True if ln in model_dict_key_re else False
            model_dict_key_re = model_dict_key_re.replace(ln, '')
            if replace and model_dict_key_re in state_dict_keys:
                model_dict[model_dict_key] = state_dict[model_dict_key_re]
    return model_dict