File size: 12,052 Bytes
d4ebf73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# 2022.06.08-Changed for implementation of TokenFusion
# Huawei Technologies Co., Ltd. <[email protected]>
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import mix_transformer
from mmcv.cnn import ConvModule
from .modules import num_parallel
class MLP(nn.Module):
"""
Linear Embedding
"""
def __init__(self, input_dim=2048, embed_dim=768):
super().__init__()
self.proj = nn.Linear(input_dim, embed_dim)
def forward(self, x):
x = x.flatten(2).transpose(1, 2).contiguous()
x = self.proj(x)
return x
class SegFormerHead(nn.Module):
"""
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
"""
def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, num_classes=20, **kwargs):
super(SegFormerHead, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
assert len(feature_strides) == len(self.in_channels)
assert min(feature_strides) == feature_strides[0]
self.feature_strides = feature_strides
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
#decoder_params = kwargs['decoder_params']
#embedding_dim = decoder_params['embed_dim']
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
self.dropout = nn.Dropout2d(0.1)
self.linear_fuse = ConvModule(
in_channels=embedding_dim*4,
out_channels=embedding_dim,
kernel_size=1,
norm_cfg=dict(type='BN', requires_grad=True)
)
self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1)
def forward(self, x):
c1, c2, c3, c4 = x
############## MLP decoder on C1-C4 ###########
n, _, h, w = c4.shape
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous()
_c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous()
_c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous()
_c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous()
_c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
x = self.dropout(_c)
x = self.linear_pred(x)
return x
class SegFormerReconstructionHead(nn.Module):
"""
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
"""
def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, **kwargs):
super(SegFormerReconstructionHead, self).__init__()
self.in_channels = in_channels
assert len(feature_strides) == len(self.in_channels)
assert min(feature_strides) == feature_strides[0]
self.feature_strides = feature_strides
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
#decoder_params = kwargs['decoder_params']
#embedding_dim = decoder_params['embed_dim']
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
self.dropout = nn.Dropout2d(0.1)
self.linear_fuse = ConvModule(
in_channels=embedding_dim*4,
out_channels=embedding_dim,
kernel_size=1,
norm_cfg=dict(type='BN', requires_grad=True)
)
self.linear_pred = nn.Conv2d(embedding_dim, 3, kernel_size=1)
def forward(self, x):
c1, c2, c3, c4 = x
############## MLP decoder on C1-C4 ###########
n, _, h, w = c4.shape
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous()
_c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous()
_c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous()
_c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous()
_c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
x = self.dropout(_c)
x = self.linear_pred(x)
return x
class TokenFusionMAEMaskedConsistency(nn.Module):
def __init__(self, backbone, config, l1_lambda, num_classes=20, embedding_dim=256, pretrained=True):
super().__init__()
self.num_classes = num_classes
self.embedding_dim = embedding_dim
self.feature_strides = [4, 8, 16, 32]
self.num_parallel = num_parallel
self.l1_lambda = l1_lambda
#self.in_channels = [32, 64, 160, 256]
#self.in_channels = [64, 128, 320, 512]
self.encoder = getattr(mix_transformer, backbone)(masking_ratio = config.masking_ratio)
self.in_channels = self.encoder.embed_dims
## initilize encoder
if pretrained:
state_dict = torch.load(config.root_dir+'/data/pytorch-weight/' + backbone + '.pth')
state_dict.pop('head.weight')
state_dict.pop('head.bias')
state_dict = expand_state_dict(self.encoder.state_dict(), state_dict, self.num_parallel)
self.encoder.load_state_dict(state_dict, strict=True)
self.decoder = SegFormerHead(feature_strides=self.feature_strides, in_channels=self.in_channels,
embedding_dim=self.embedding_dim, num_classes=self.num_classes)
self.decoder_reconstruct_rgb = SegFormerReconstructionHead(feature_strides=self.feature_strides, in_channels=self.in_channels,
embedding_dim=self.embedding_dim, num_classes=self.num_classes)
self.decoder_reconstruct_depth = SegFormerReconstructionHead(feature_strides=self.feature_strides, in_channels=self.in_channels,
embedding_dim=self.embedding_dim, num_classes=self.num_classes)
self.alpha = nn.Parameter(torch.ones(self.num_parallel, requires_grad=True))
self.register_parameter('alpha', self.alpha)
def get_params(self):
param_groups = [[], [], []]
for name, param in list(self.encoder.named_parameters()):
if "norm" in name:
param_groups[1].append(param)
else:
param_groups[0].append(param)
for param in list(self.decoder.parameters()):
param_groups[2].append(param)
return param_groups
# def get_params(self):
# param_groups = [[], []]
# for param in list(self.encoder.parameters()):
# param_groups[0].append(param)
# for param in list(self.decoder.parameters()):
# param_groups[1].append(param)
# return param_groups
def forward(self, data, get_sup_loss = False, gt = None, criterion = None, mask = False, range_batches_to_mask = None):
b, c, h, w = data[0].shape #rgb is the 0th element
if not mask:
masking_branch = -1
else:
masking_branch = int((torch.rand(1)<0.5)*1)
# masking_branch = 1
x, exchange_masks = self.encoder(data, masking_branch, range_batches_to_mask)
if self.training:
#Reconstruction branch
reconstruction_criterion = nn.MSELoss()
encoder_output_0 = [x[0][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[0]))]
pred_reconstruct_0 = self.decoder_reconstruct_rgb(encoder_output_0)
pred_reconstruct_0 = F.interpolate(pred_reconstruct_0, size=(h, w), mode='bilinear', align_corners=True)
encoder_output_1 = [x[1][i][range_batches_to_mask[0]:range_batches_to_mask[1]] for i in range(len(x[1]))]
pred_reconstruct_1 = self.decoder_reconstruct_depth(encoder_output_1)
pred_reconstruct_1 = F.interpolate(pred_reconstruct_1, size=(h, w), mode='bilinear', align_corners=True)
reconstruction_loss = (1 - masking_branch) * reconstruction_criterion(pred_reconstruct_0, data[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
reconstruction_loss += masking_branch * reconstruction_criterion(pred_reconstruct_1, data[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
pred = [self.decoder(x[0]), self.decoder(x[1])]
ens = 0
alpha_soft = F.softmax(self.alpha)
for l in range(self.num_parallel):
ens += alpha_soft[l] * pred[l].detach()
pred.append(ens)
for i in range(len(pred)):
pred[i] = F.interpolate(pred[i], size=(h, w), mode='bilinear', align_corners=True)
if not self.training:
return pred
else: # training
if get_sup_loss:
l1 = self.get_l1_loss(exchange_masks, data[0].get_device()) / b
l1_loss = self.l1_lambda * l1
sup_loss = self.get_sup_loss(pred, gt, criterion)
# print(sup_loss, l1, l1_loss, sup_loss + l1_loss, "losses")
return pred, sup_loss + l1_loss, reconstruction_loss, masking_branch
else:
return pred, reconstruction_loss, masking_branch
def get_l1_loss(self, masks, device):
L1_loss = 0
for mask in masks:
L1_loss += sum([L1_penalty(m, device) for m in mask])
return L1_loss.to(device)
def get_sup_loss(self, pred, gt, criterion):
sup_loss = 0
for p in pred:
p = p[:gt.shape[0]] #Getting loss for only those examples in batch where gt exists. Won't get sup loss for unlabeled data.
# soft_output = nn.LogSoftmax()(p)
sup_loss += criterion(p, gt)
return sup_loss / len(pred)
def expand_state_dict(model_dict, state_dict, num_parallel):
model_dict_keys = model_dict.keys()
state_dict_keys = state_dict.keys()
for model_dict_key in model_dict_keys:
model_dict_key_re = model_dict_key.replace('module.', '')
if model_dict_key_re in state_dict_keys:
model_dict[model_dict_key] = state_dict[model_dict_key_re]
for i in range(num_parallel):
ln = '.ln_%d' % i
replace = True if ln in model_dict_key_re else False
model_dict_key_re = model_dict_key_re.replace(ln, '')
if replace and model_dict_key_re in state_dict_keys:
model_dict[model_dict_key] = state_dict[model_dict_key_re]
return model_dict
def L1_penalty(var, device):
return torch.abs(var).sum().to(device)
if __name__=="__main__":
# import torch.distributed as dist
# dist.init_process_group('gloo', init_method='file:///temp/somefile', rank=0, world_size=1)
pretrained_weights = torch.load('pretrained/mit_b1.pth')
wetr = TokenFusionMAEMaskedConsistency('mit_b1', num_classes=20, embedding_dim=256, pretrained=True).cuda()
wetr.get_param_groupsv()
dummy_input = torch.rand(2,3,512,512).cuda()
wetr(dummy_input) |