File size: 22,556 Bytes
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# 2022.06.08-Changed for implementation of TokenFusion
#            Huawei Technologies Co., Ltd. <[email protected]>
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from .modules import ModuleParallel, LayerNormParallel, num_parallel, TokenExchange


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = ModuleParallel(nn.Linear(in_features, hidden_features))
        self.dwconv = DWConv(hidden_features)
        self.act = ModuleParallel(act_layer())
        self.fc2 = ModuleParallel(nn.Linear(hidden_features, out_features))
        self.drop = ModuleParallel(nn.Dropout(drop))

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = self.fc1(x)
        x = [self.dwconv(x[0], H, W), self.dwconv(x[1], H, W)]
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = ModuleParallel(nn.Linear(dim, dim, bias=qkv_bias))
        self.kv = ModuleParallel(nn.Linear(dim, dim * 2, bias=qkv_bias))
        self.attn_drop = ModuleParallel(nn.Dropout(attn_drop))
        self.proj = ModuleParallel(nn.Linear(dim, dim))
        self.proj_drop = ModuleParallel(nn.Dropout(proj_drop))

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = ModuleParallel(nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio))
            self.norm = LayerNormParallel(dim)
        self.exchange = TokenExchange()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W, mask):
        B, N, C = x[0].shape
        q = self.q(x)
        q = [q_.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) for q_ in q]

        if self.sr_ratio > 1:
            x = [x_.permute(0, 2, 1).reshape(B, C, H, W) for x_ in x]
            x = self.sr(x)
            x = [x_.reshape(B, C, -1).permute(0, 2, 1) for x_ in x]
            x = self.norm(x)
            kv = self.kv(x)
            kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv]
        else:
            kv = self.kv(x)
            kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv]
        k, v = [kv[0][0], kv[1][0]], [kv[0][1], kv[1][1]]

        attn = [(q_ @ k_.transpose(-2, -1)) * self.scale for (q_, k_) in zip(q, k)]
        attn = [attn_.softmax(dim=-1) for attn_ in attn]
        attn = self.attn_drop(attn)

        x = [(attn_ @ v_).transpose(1, 2).reshape(B, N, C) for (attn_, v_) in zip(attn, v)]
        x = self.proj(x)
        x = self.proj_drop(x)

        if mask is not None:
            x = [x_ * mask_.unsqueeze(2) for (x_, mask_) in zip(x, mask)]
            x = self.exchange(x, mask, mask_threshold=0.02)

        return x


class PredictorLG(nn.Module):
    """ Image to Patch Embedding from DydamicVit
    """
    def __init__(self, embed_dim=384):
        super().__init__()
        self.score_nets = nn.ModuleList([nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim),
            nn.GELU(),
            nn.Linear(embed_dim, embed_dim // 2),
            nn.GELU(),
            nn.Linear(embed_dim // 2, embed_dim // 4),
            nn.GELU(),
            nn.Linear(embed_dim // 4, 2),
            nn.LogSoftmax(dim=-1)
        ) for _ in range(num_parallel)])

    def forward(self, x):
        x = [self.score_nets[i](x[i]) for i in range(num_parallel)]
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=LayerNormParallel, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        # self.score = PredictorLG(dim)

        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = ModuleParallel(DropPath(drop_path)) if drop_path > 0. else ModuleParallel(nn.Identity())
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        # self.exchange = TokenExchange()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W, mask=None):
        B = x[0].shape[0]
        # norm1 = self.norm1(x)
        # score = self.score(norm1)
        # mask = [F.gumbel_softmax(score_.reshape(B, -1, 2), hard=True)[:, :, 0] for score_ in score]
        # if mask is not None:
        #     norm = [norm_ * mask_.unsqueeze(2) for (norm_, mask_) in zip(norm, mask)]
        f = self.drop_path(self.attn(self.norm1(x), H, W, mask))
        x = [x_ + f_ for (x_, f_) in zip (x, f)]
        f = self.drop_path(self.mlp(self.norm2(x), H, W))
        x = [x_ + f_ for (x_, f_) in zip (x, f)]
        # if mask is not None:
        #     x = self.exchange(x, mask, mask_threshold=0.02)
        return x


class OverlapPatchEmbedAndMask(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, masking_ratio = 0.25, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = ModuleParallel(nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2)))
        self.norm = LayerNormParallel(embed_dim)
        self.masking_ratio = masking_ratio
        self.embed_dim = embed_dim
        self.mask_token = nn.parameter.Parameter(torch.randn(self.embed_dim), requires_grad = True)#None #When training in the SupOnly loop, unused params raise error in DDP. Hence instantiating mask_token only when masked training begins
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def mask_with_learnt_mask(self, x):
        # if self.mask_token is None: #When training in the SupOnly loop, unused params raise error in DDP. Hence instantiating mask_token only when masked training begins
        #     self.mask_token = nn.parameter.Parameter(torch.randn(self.embed_dim, device=x.device), requires_grad = True)
        #     print(self.mask_token[:10], x.device, "token")
        N, L, D = x.shape  # batch, length, dim
        indicies = torch.FloatTensor(N, L).uniform_() <= self.masking_ratio
        x[indicies] = self.mask_token
        return x

    def forward(self, x, masking_branch = -1, range_batches_to_mask = None):
        assert masking_branch < num_parallel and masking_branch >= -1
        sum_mask = torch.sum(self.mask_token)
        x = self.proj(x)
        _, _, H, W = x[0].shape
        x = [x_.flatten(2).transpose(1, 2) for x_ in x]
        x = self.norm(x)
        if not masking_branch == -1:
            assert range_batches_to_mask is not None, "expected the range of batches to mask to not mask the labeled images"
            # x[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]] = self.mask_with_mean(x[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
            x[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]] = self.mask_with_learnt_mask(x[masking_branch][range_batches_to_mask[0]:range_batches_to_mask[1]])
            # masking_branch = 1
            # x[masking_branch] = self.mask_with_mean(x[masking_branch])
            # x[masking_branch] = self.mask_with_learnt_mask(x[masking_branch])
        else:
            x[0] = x[0] + 0*sum_mask #So that when training with SupOnly (and not using any masking), DDP doesn't raise an error that you have unused parameters. 
        return x, H, W


class MixVisionTransformer(nn.Module):
    def __init__(self, masking_ratio, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNormParallel,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.embed_dims = embed_dims

        # patch_embed
        self.patch_embed1 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])

        predictor_list = [PredictorLG(embed_dims[i]) for i in range(len(depths))]
        self.score_predictor = nn.ModuleList(predictor_list)

        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])

        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])

        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])

        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])

        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
    '''
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
    '''
    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]

    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x, masking_branch, range_batches_to_mask):
        B = x[0].shape[0]
        outs0, outs1 = [], []
        masks = []

        # stage 1
        # x, H, W = self.patch_embed1(x)
        x, H, W = self.patch_embed1(x, masking_branch = masking_branch, range_batches_to_mask = range_batches_to_mask)
        for i, blk in enumerate(self.block1):
            score = self.score_predictor[0](x)
            mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score]  # mask_: [B, N]
            masks.append(mask)
            x = blk(x, H, W, mask)
        x = self.norm1(x)
        x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
        outs0.append(x[0])
        outs1.append(x[1])

        # stage 2
        x, H, W = self.patch_embed2(x, masking_branch = -1)
        for i, blk in enumerate(self.block2):
            score = self.score_predictor[1](x)
            mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score]  # mask_: [B, N]
            masks.append(mask)
            x = blk(x, H, W, mask)
        x = self.norm2(x)
        x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
        outs0.append(x[0])
        outs1.append(x[1])

        # stage 3
        x, H, W = self.patch_embed3(x, masking_branch = -1)
        for i, blk in enumerate(self.block3):
            score = self.score_predictor[2](x)
            mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score]  # mask_: [B, N]
            masks.append(mask)
            x = blk(x, H, W, mask)
        x = self.norm3(x)
        x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
        outs0.append(x[0])
        outs1.append(x[1])

        # stage 4
        x, H, W = self.patch_embed4(x, masking_branch = -1)
        for i, blk in enumerate(self.block4):
            score = self.score_predictor[3](x)
            mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score]  # mask_: [B, N]
            masks.append(mask)
            x = blk(x, H, W, mask)
        x = self.norm4(x)
        x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
        outs0.append(x[0])
        outs1.append(x[1])

        return [outs0, outs1], masks

    def forward(self, x, masking_branch, range_batches_to_mask):
        x, masks = self.forward_features(x, masking_branch, range_batches_to_mask)
        return x, masks


class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).contiguous().view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2).contiguous()

        return x

class mit_b0(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b0, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b1(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b1, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b2(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b2, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b3(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b3, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b4(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b4, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class mit_b5(MixVisionTransformer):
    def __init__(self, masking_ratio, **kwargs):
        super(mit_b5, self).__init__(masking_ratio = masking_ratio, 
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)