File size: 7,635 Bytes
d4ebf73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# 2022.06.08-Changed for implementation of TokenFusion
#            Huawei Technologies Co., Ltd. <[email protected]>
import torch
import torch.nn as nn
import torch.nn.functional as F 
from . import mix_transformer
from mmcv.cnn import ConvModule
from .modules import num_parallel


class MLP(nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2).contiguous()
        x = self.proj(x)
        return x


class SegFormerHead(nn.Module):
    """
    SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
    """
    def __init__(self, feature_strides=None, in_channels=128, embedding_dim=256, num_classes=20, **kwargs):
        super(SegFormerHead, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        assert len(feature_strides) == len(self.in_channels)
        assert min(feature_strides) == feature_strides[0]
        self.feature_strides = feature_strides

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels

        #decoder_params = kwargs['decoder_params']
        #embedding_dim = decoder_params['embed_dim']

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
        self.dropout = nn.Dropout2d(0.1)

        self.linear_fuse = ConvModule(
            in_channels=embedding_dim*4,
            out_channels=embedding_dim,
            kernel_size=1,
            norm_cfg=dict(type='BN', requires_grad=True)
        )

        self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1)

    def forward(self, x):
        c1, c2, c3, c4 = x

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape

        _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]).contiguous()
        _c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]).contiguous()
        _c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]).contiguous()
        _c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]).contiguous()

        _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))
        x = self.dropout(_c)
        x = self.linear_pred(x)

        return x


class TokenFusionBothMask(nn.Module):
    def __init__(self, backbone, config, l1_lambda, num_classes=20, embedding_dim=256, pretrained=True):
        super().__init__()
        self.num_classes = num_classes
        self.embedding_dim = embedding_dim
        self.feature_strides = [4, 8, 16, 32]
        self.num_parallel = num_parallel
        self.l1_lambda = l1_lambda
        #self.in_channels = [32, 64, 160, 256]
        #self.in_channels = [64, 128, 320, 512]

        self.encoder = getattr(mix_transformer, backbone)(masking_ratio = config.masking_ratio)
        self.in_channels = self.encoder.embed_dims
        ## initilize encoder
        if pretrained:
            state_dict = torch.load(config.root_dir+'/data/pytorch-weight/' + backbone + '.pth')
            state_dict.pop('head.weight')
            state_dict.pop('head.bias')
            state_dict = expand_state_dict(self.encoder.state_dict(), state_dict, self.num_parallel)
            self.encoder.load_state_dict(state_dict, strict=True)

        self.decoder = SegFormerHead(feature_strides=self.feature_strides, in_channels=self.in_channels, 
                                     embedding_dim=self.embedding_dim, num_classes=self.num_classes)

        self.alpha = nn.Parameter(torch.ones(self.num_parallel, requires_grad=True))
        self.register_parameter('alpha', self.alpha)

    def get_params(self):
        param_groups = [[], [], []]
        for name, param in list(self.encoder.named_parameters()):
            if "norm" in name:
                param_groups[1].append(param)
            else:
                param_groups[0].append(param)
        for param in list(self.decoder.parameters()):
            param_groups[2].append(param)
        return param_groups

    def forward(self, data, get_sup_loss = False, gt = None, criterion = None, mask = False, range_batches_to_mask = None):
        b, c, h, w = data[0].shape  #rgb is the 0th element
        x, exchange_masks = self.encoder(data, mask = mask, range_batches_to_mask = range_batches_to_mask)
        pred = [self.decoder(x[0]), self.decoder(x[1])]
        ens = 0
        alpha_soft = F.softmax(self.alpha)
        for l in range(self.num_parallel):
            ens += alpha_soft[l] * pred[l].detach()
        pred.append(ens)
        for i in range(len(pred)):
            pred[i] =  F.interpolate(pred[i], size=(h, w), mode='bilinear', align_corners=True)
        
        if not self.training:
            return pred
        else: # training
            if get_sup_loss:
                l1 = self.get_l1_loss(exchange_masks, data[0].get_device()) / b
                l1_loss = self.l1_lambda * l1
                sup_loss = self.get_sup_loss(pred, gt, criterion)
                # print(sup_loss, l1, l1_loss, sup_loss + l1_loss, "losses")
                return pred, sup_loss + l1_loss
            else:
                return pred

    def get_l1_loss(self, masks, device):
        L1_loss = 0
        for mask in masks:
            L1_loss += sum([L1_penalty(m, device) for m in mask])
        return L1_loss.to(device)

    def get_sup_loss(self, pred, gt, criterion):
        sup_loss = 0
        for p in pred:
            p = p[:gt.shape[0]] #Getting loss for only those examples in batch where gt exists. Won't get sup loss for unlabeled data. 
            # soft_output = nn.LogSoftmax()(p)
            sup_loss += criterion(p, gt)
        return sup_loss / len(pred)


def expand_state_dict(model_dict, state_dict, num_parallel):
    model_dict_keys = model_dict.keys()
    state_dict_keys = state_dict.keys()
    for model_dict_key in model_dict_keys:
        model_dict_key_re = model_dict_key.replace('module.', '')
        if model_dict_key_re in state_dict_keys:
            model_dict[model_dict_key] = state_dict[model_dict_key_re]
        for i in range(num_parallel):
            ln = '.ln_%d' % i
            replace = True if ln in model_dict_key_re else False
            model_dict_key_re = model_dict_key_re.replace(ln, '')
            if replace and model_dict_key_re in state_dict_keys:
                model_dict[model_dict_key] = state_dict[model_dict_key_re]
    return model_dict
    
def L1_penalty(var, device):
    return torch.abs(var).sum().to(device)


if __name__=="__main__":
    # import torch.distributed as dist
    # dist.init_process_group('gloo', init_method='file:///temp/somefile', rank=0, world_size=1)
    pretrained_weights = torch.load('pretrained/mit_b1.pth')
    wetr = TokenFusionBothMask('mit_b1', num_classes=20, embedding_dim=256, pretrained=True).cuda()
    wetr.get_param_groupsv()
    dummy_input = torch.rand(2,3,512,512).cuda()
    wetr(dummy_input)