Spaces:
Sleeping
Sleeping
Update app.py (#1)
Browse files- Update app.py (be111dd97bcb3fba3def0a8384de64a5f118b7cd)
Co-authored-by: Aditya Deshmukh <[email protected]>
app.py
CHANGED
@@ -95,17 +95,14 @@ def get_masked_img(img, w, h, features, orig_h, orig_w, input_h, input_w, dilate
|
|
95 |
return *figs, *masks
|
96 |
|
97 |
|
98 |
-
def get_inpainted_img(img,
|
99 |
lama_config = args.lama_config
|
100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
model['lama'], img, mask, lama_config, device=device)
|
107 |
-
out.append(img_inpainted)
|
108 |
-
return out
|
109 |
|
110 |
|
111 |
# get args
|
@@ -128,104 +125,16 @@ lama_ckpt = args.lama_ckpt
|
|
128 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
129 |
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
with gr.Column(variant="panel"):
|
141 |
-
with gr.Row():
|
142 |
-
gr.Markdown("## Input Image")
|
143 |
-
with gr.Row():
|
144 |
-
img = gr.Image(label="Input Image").style(height="200px")
|
145 |
-
with gr.Column(variant="panel"):
|
146 |
-
with gr.Row():
|
147 |
-
gr.Markdown("## Pointed Image")
|
148 |
-
with gr.Row():
|
149 |
-
img_pointed = gr.Plot(label='Pointed Image')
|
150 |
-
with gr.Column(variant="panel"):
|
151 |
-
with gr.Row():
|
152 |
-
gr.Markdown("## Control Panel")
|
153 |
-
with gr.Row():
|
154 |
-
w = gr.Number(label="Point Coordinate W")
|
155 |
-
h = gr.Number(label="Point Coordinate H")
|
156 |
-
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=100, step=1, value=15)
|
157 |
-
sam_mask = gr.Button("Predict Mask", variant="primary").style(full_width=True, size="sm")
|
158 |
-
lama = gr.Button("Inpaint Image", variant="primary").style(full_width=True, size="sm")
|
159 |
-
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary").style(full_width=True, size="sm")
|
160 |
-
|
161 |
-
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
|
162 |
-
with gr.Row(variant="panel"):
|
163 |
-
with gr.Column():
|
164 |
-
with gr.Row():
|
165 |
-
gr.Markdown("## Segmentation Mask")
|
166 |
-
with gr.Row():
|
167 |
-
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0").style(height="200px")
|
168 |
-
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1").style(height="200px")
|
169 |
-
mask_2 = gr.outputs.Image(type="numpy", label="Segmentation Mask 2").style(height="200px")
|
170 |
-
|
171 |
-
with gr.Row(variant="panel"):
|
172 |
-
with gr.Column():
|
173 |
-
with gr.Row():
|
174 |
-
gr.Markdown("## Image with Mask")
|
175 |
-
with gr.Row():
|
176 |
-
img_with_mask_0 = gr.Plot(label="Image with Segmentation Mask 0")
|
177 |
-
img_with_mask_1 = gr.Plot(label="Image with Segmentation Mask 1")
|
178 |
-
img_with_mask_2 = gr.Plot(label="Image with Segmentation Mask 2")
|
179 |
-
|
180 |
-
with gr.Row(variant="panel"):
|
181 |
-
with gr.Column():
|
182 |
-
with gr.Row():
|
183 |
-
gr.Markdown("## Image Removed with Mask")
|
184 |
-
with gr.Row():
|
185 |
-
img_rm_with_mask_0 = gr.outputs.Image(
|
186 |
-
type="numpy", label="Image Removed with Segmentation Mask 0").style(height="200px")
|
187 |
-
img_rm_with_mask_1 = gr.outputs.Image(
|
188 |
-
type="numpy", label="Image Removed with Segmentation Mask 1").style(height="200px")
|
189 |
-
img_rm_with_mask_2 = gr.outputs.Image(
|
190 |
-
type="numpy", label="Image Removed with Segmentation Mask 2").style(height="200px")
|
191 |
-
|
192 |
-
|
193 |
-
def get_select_coords(img, evt: gr.SelectData):
|
194 |
-
dpi = plt.rcParams['figure.dpi']
|
195 |
-
height, width = img.shape[:2]
|
196 |
-
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
197 |
-
plt.imshow(img)
|
198 |
-
plt.axis('off')
|
199 |
-
plt.tight_layout()
|
200 |
-
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
|
201 |
-
size=(width*0.04)**2)
|
202 |
-
return evt.index[0], evt.index[1], fig
|
203 |
-
|
204 |
-
img.select(get_select_coords, [img], [w, h, img_pointed])
|
205 |
-
img.upload(get_sam_feat, [img], [features, orig_h, orig_w, input_h, input_w])
|
206 |
-
|
207 |
-
sam_mask.click(
|
208 |
-
get_masked_img,
|
209 |
-
[img, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size],
|
210 |
-
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
|
211 |
-
)
|
212 |
-
|
213 |
-
lama.click(
|
214 |
-
get_inpainted_img,
|
215 |
-
[img, mask_0, mask_1, mask_2],
|
216 |
-
[img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
|
217 |
-
)
|
218 |
-
|
219 |
-
|
220 |
-
def reset(*args):
|
221 |
-
return [None for _ in args]
|
222 |
-
|
223 |
-
clear_button_image.click(
|
224 |
-
reset,
|
225 |
-
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2],
|
226 |
-
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
|
227 |
-
)
|
228 |
|
229 |
if __name__ == "__main__":
|
230 |
-
demo.
|
231 |
-
|
|
|
95 |
return *figs, *masks
|
96 |
|
97 |
|
98 |
+
def get_inpainted_img(img,mask):
|
99 |
lama_config = args.lama_config
|
100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
+
if len(mask.shape)==3:
|
102 |
+
mask = mask[:,:,0]
|
103 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
104 |
+
model['lama'], img, mask, lama_config, device=device)
|
105 |
+
return img_inpainted
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
# get args
|
|
|
125 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
126 |
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
127 |
|
128 |
+
image_input = gr.Image(label="Input Image")
|
129 |
+
mask_input = gr.Image(label="Mask Image")
|
130 |
+
demo = gr.Interface(
|
131 |
+
fn=get_inpainted_img,
|
132 |
+
inputs=[image_input, mask_input],
|
133 |
+
outputs=gr.Image(type="numpy", label="Output Image"),
|
134 |
+
title="Image and Mask Processor",
|
135 |
+
description="Upload an image and a mask to process the image. The mask highlights the areas to be processed.",
|
136 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
+
demo.queue(api_open=True, concurrency_count=2, max_size=10)
|
140 |
+
demo.launch(show_api=True)
|