File size: 4,261 Bytes
b09c1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import cv2
import sys
import argparse
import numpy as np
import torch
from pathlib import Path
from matplotlib import pyplot as plt
from typing import Any, Dict, List

from sam_segment import predict_masks_with_sam
from stable_diffusion_inpaint import fill_img_with_sd
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
    show_mask, show_points


def setup_args(parser):
    parser.add_argument(
        "--input_img", type=str, required=True,
        help="Path to a single input img",
    )
    parser.add_argument(
        "--point_coords", type=float, nargs='+', required=True,
        help="The coordinate of the point prompt, [coord_W coord_H].",
    )
    parser.add_argument(
        "--point_labels", type=int, nargs='+', required=True,
        help="The labels of the point prompt, 1 or 0.",
    )
    parser.add_argument(
        "--text_prompt", type=str, required=True,
        help="Text prompt",
    )
    parser.add_argument(
        "--dilate_kernel_size", type=int, default=None,
        help="Dilate kernel size. Default: None",
    )
    parser.add_argument(
        "--output_dir", type=str, required=True,
        help="Output path to the directory with results.",
    )
    parser.add_argument(
        "--sam_model_type", type=str,
        default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
        help="The type of sam model to load. Default: 'vit_h"
    )
    parser.add_argument(
        "--sam_ckpt", type=str, required=True,
        help="The path to the SAM checkpoint to use for mask generation.",
    )
    parser.add_argument(
        "--seed", type=int,
        help="Specify seed for reproducibility.",
    )
    parser.add_argument(
        "--deterministic", action="store_true",
        help="Use deterministic algorithms for reproducibility.",
    )



if __name__ == "__main__":
    """Example usage:
    python fill_anything.py \
        --input_img FA_demo/FA1_dog.png \
        --point_coords 750 500 \
        --point_labels 1 \
        --text_prompt "a teddy bear on a bench" \
        --dilate_kernel_size 15 \
        --output_dir ./results \
        --sam_model_type "vit_h" \
        --sam_ckpt sam_vit_h_4b8939.pth 
    """
    parser = argparse.ArgumentParser()
    setup_args(parser)
    args = parser.parse_args(sys.argv[1:])
    device = "cuda" if torch.cuda.is_available() else "cpu"

    img = load_img_to_array(args.input_img)

    masks, _, _ = predict_masks_with_sam(
        img,
        [args.point_coords],
        args.point_labels,
        model_type=args.sam_model_type,
        ckpt_p=args.sam_ckpt,
        device=device,
    )
    masks = masks.astype(np.uint8) * 255

    # dilate mask to avoid unmasked edge effect
    if args.dilate_kernel_size is not None:
        masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]

    # visualize the segmentation results
    img_stem = Path(args.input_img).stem
    out_dir = Path(args.output_dir) / img_stem
    out_dir.mkdir(parents=True, exist_ok=True)
    for idx, mask in enumerate(masks):
        # path to the results
        mask_p = out_dir / f"mask_{idx}.png"
        img_points_p = out_dir / f"with_points.png"
        img_mask_p = out_dir / f"with_{Path(mask_p).name}"

        # save the mask
        save_array_to_img(mask, mask_p)

        # save the pointed and masked image
        dpi = plt.rcParams['figure.dpi']
        height, width = img.shape[:2]
        plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
        plt.imshow(img)
        plt.axis('off')
        show_points(plt.gca(), [args.point_coords], args.point_labels,
                    size=(width*0.04)**2)
        plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
        show_mask(plt.gca(), mask, random_color=False)
        plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
        plt.close()

    # fill the masked image
    for idx, mask in enumerate(masks):
        if args.seed is not None:
            torch.manual_seed(args.seed)
        mask_p = out_dir / f"mask_{idx}.png"
        img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
        img_filled = fill_img_with_sd(
            img, mask, args.text_prompt, device=device)
        save_array_to_img(img_filled, img_filled_p)