Spaces:
Running
Running
import argparse | |
import json | |
import warnings | |
from collections import OrderedDict | |
from copy import deepcopy | |
from typing import Any, Dict, List | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer | |
from groundingdino.util.slconfig import SLConfig | |
def slprint(x, name="x"): | |
if isinstance(x, (torch.Tensor, np.ndarray)): | |
print(f"{name}.shape:", x.shape) | |
elif isinstance(x, (tuple, list)): | |
print("type x:", type(x)) | |
for i in range(min(10, len(x))): | |
slprint(x[i], f"{name}[{i}]") | |
elif isinstance(x, dict): | |
for k, v in x.items(): | |
slprint(v, f"{name}[{k}]") | |
else: | |
print(f"{name}.type:", type(x)) | |
def clean_state_dict(state_dict): | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
if k[:7] == "module.": | |
k = k[7:] # remove `module.` | |
new_state_dict[k] = v | |
return new_state_dict | |
def renorm( | |
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) -> torch.FloatTensor: | |
# img: tensor(3,H,W) or tensor(B,3,H,W) | |
# return: same as img | |
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() | |
if img.dim() == 3: | |
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( | |
img.size(0), | |
str(img.size()), | |
) | |
img_perm = img.permute(1, 2, 0) | |
mean = torch.Tensor(mean) | |
std = torch.Tensor(std) | |
img_res = img_perm * std + mean | |
return img_res.permute(2, 0, 1) | |
else: # img.dim() == 4 | |
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( | |
img.size(1), | |
str(img.size()), | |
) | |
img_perm = img.permute(0, 2, 3, 1) | |
mean = torch.Tensor(mean) | |
std = torch.Tensor(std) | |
img_res = img_perm * std + mean | |
return img_res.permute(0, 3, 1, 2) | |
class CocoClassMapper: | |
def __init__(self) -> None: | |
self.category_map_str = { | |
"1": 1, | |
"2": 2, | |
"3": 3, | |
"4": 4, | |
"5": 5, | |
"6": 6, | |
"7": 7, | |
"8": 8, | |
"9": 9, | |
"10": 10, | |
"11": 11, | |
"13": 12, | |
"14": 13, | |
"15": 14, | |
"16": 15, | |
"17": 16, | |
"18": 17, | |
"19": 18, | |
"20": 19, | |
"21": 20, | |
"22": 21, | |
"23": 22, | |
"24": 23, | |
"25": 24, | |
"27": 25, | |
"28": 26, | |
"31": 27, | |
"32": 28, | |
"33": 29, | |
"34": 30, | |
"35": 31, | |
"36": 32, | |
"37": 33, | |
"38": 34, | |
"39": 35, | |
"40": 36, | |
"41": 37, | |
"42": 38, | |
"43": 39, | |
"44": 40, | |
"46": 41, | |
"47": 42, | |
"48": 43, | |
"49": 44, | |
"50": 45, | |
"51": 46, | |
"52": 47, | |
"53": 48, | |
"54": 49, | |
"55": 50, | |
"56": 51, | |
"57": 52, | |
"58": 53, | |
"59": 54, | |
"60": 55, | |
"61": 56, | |
"62": 57, | |
"63": 58, | |
"64": 59, | |
"65": 60, | |
"67": 61, | |
"70": 62, | |
"72": 63, | |
"73": 64, | |
"74": 65, | |
"75": 66, | |
"76": 67, | |
"77": 68, | |
"78": 69, | |
"79": 70, | |
"80": 71, | |
"81": 72, | |
"82": 73, | |
"84": 74, | |
"85": 75, | |
"86": 76, | |
"87": 77, | |
"88": 78, | |
"89": 79, | |
"90": 80, | |
} | |
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()} | |
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()} | |
def origin2compact(self, idx): | |
return self.origin2compact_mapper[int(idx)] | |
def compact2origin(self, idx): | |
return self.compact2origin_mapper[int(idx)] | |
def to_device(item, device): | |
if isinstance(item, torch.Tensor): | |
return item.to(device) | |
elif isinstance(item, list): | |
return [to_device(i, device) for i in item] | |
elif isinstance(item, dict): | |
return {k: to_device(v, device) for k, v in item.items()} | |
else: | |
raise NotImplementedError( | |
"Call Shilong if you use other containers! type: {}".format(type(item)) | |
) | |
# | |
def get_gaussian_mean(x, axis, other_axis, softmax=True): | |
""" | |
Args: | |
x (float): Input images(BxCxHxW) | |
axis (int): The index for weighted mean | |
other_axis (int): The other index | |
Returns: weighted index for axis, BxC | |
""" | |
mat2line = torch.sum(x, axis=other_axis) | |
# mat2line = mat2line / mat2line.mean() * 10 | |
if softmax: | |
u = torch.softmax(mat2line, axis=2) | |
else: | |
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6) | |
size = x.shape[axis] | |
ind = torch.linspace(0, 1, size).to(x.device) | |
batch = x.shape[0] | |
channel = x.shape[1] | |
index = ind.repeat([batch, channel, 1]) | |
mean_position = torch.sum(index * u, dim=2) | |
return mean_position | |
def get_expected_points_from_map(hm, softmax=True): | |
"""get_gaussian_map_from_points | |
B,C,H,W -> B,N,2 float(0, 1) float(0, 1) | |
softargmax function | |
Args: | |
hm (float): Input images(BxCxHxW) | |
Returns: | |
weighted index for axis, BxCx2. float between 0 and 1. | |
""" | |
# hm = 10*hm | |
B, C, H, W = hm.shape | |
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C | |
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C | |
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2) | |
return torch.stack([x_mean, y_mean], dim=2) | |
# Positional encoding (section 5.1) | |
# borrow from nerf | |
class Embedder: | |
def __init__(self, **kwargs): | |
self.kwargs = kwargs | |
self.create_embedding_fn() | |
def create_embedding_fn(self): | |
embed_fns = [] | |
d = self.kwargs["input_dims"] | |
out_dim = 0 | |
if self.kwargs["include_input"]: | |
embed_fns.append(lambda x: x) | |
out_dim += d | |
max_freq = self.kwargs["max_freq_log2"] | |
N_freqs = self.kwargs["num_freqs"] | |
if self.kwargs["log_sampling"]: | |
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs) | |
else: | |
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs) | |
for freq in freq_bands: | |
for p_fn in self.kwargs["periodic_fns"]: | |
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)) | |
out_dim += d | |
self.embed_fns = embed_fns | |
self.out_dim = out_dim | |
def embed(self, inputs): | |
return torch.cat([fn(inputs) for fn in self.embed_fns], -1) | |
def get_embedder(multires, i=0): | |
import torch.nn as nn | |
if i == -1: | |
return nn.Identity(), 3 | |
embed_kwargs = { | |
"include_input": True, | |
"input_dims": 3, | |
"max_freq_log2": multires - 1, | |
"num_freqs": multires, | |
"log_sampling": True, | |
"periodic_fns": [torch.sin, torch.cos], | |
} | |
embedder_obj = Embedder(**embed_kwargs) | |
embed = lambda x, eo=embedder_obj: eo.embed(x) | |
return embed, embedder_obj.out_dim | |
class APOPMeter: | |
def __init__(self) -> None: | |
self.tp = 0 | |
self.fp = 0 | |
self.tn = 0 | |
self.fn = 0 | |
def update(self, pred, gt): | |
""" | |
Input: | |
pred, gt: Tensor() | |
""" | |
assert pred.shape == gt.shape | |
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item() | |
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item() | |
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item() | |
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item() | |
def update_cm(self, tp, fp, tn, fn): | |
self.tp += tp | |
self.fp += fp | |
self.tn += tn | |
self.tn += fn | |
def inverse_sigmoid(x, eps=1e-5): | |
x = x.clamp(min=0, max=1) | |
x1 = x.clamp(min=eps) | |
x2 = (1 - x).clamp(min=eps) | |
return torch.log(x1 / x2) | |
def get_raw_dict(args): | |
""" | |
return the dicf contained in args. | |
e.g: | |
>>> with open(path, 'w') as f: | |
json.dump(get_raw_dict(args), f, indent=2) | |
""" | |
if isinstance(args, argparse.Namespace): | |
return vars(args) | |
elif isinstance(args, dict): | |
return args | |
elif isinstance(args, SLConfig): | |
return args._cfg_dict | |
else: | |
raise NotImplementedError("Unknown type {}".format(type(args))) | |
def stat_tensors(tensor): | |
assert tensor.dim() == 1 | |
tensor_sm = tensor.softmax(0) | |
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum() | |
return { | |
"max": tensor.max(), | |
"min": tensor.min(), | |
"mean": tensor.mean(), | |
"var": tensor.var(), | |
"std": tensor.var() ** 0.5, | |
"entropy": entropy, | |
} | |
class NiceRepr: | |
"""Inherit from this class and define ``__nice__`` to "nicely" print your | |
objects. | |
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function | |
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. | |
If the inheriting class has a ``__len__``, method then the default | |
``__nice__`` method will return its length. | |
Example: | |
>>> class Foo(NiceRepr): | |
... def __nice__(self): | |
... return 'info' | |
>>> foo = Foo() | |
>>> assert str(foo) == '<Foo(info)>' | |
>>> assert repr(foo).startswith('<Foo(info) at ') | |
Example: | |
>>> class Bar(NiceRepr): | |
... pass | |
>>> bar = Bar() | |
>>> import pytest | |
>>> with pytest.warns(None) as record: | |
>>> assert 'object at' in str(bar) | |
>>> assert 'object at' in repr(bar) | |
Example: | |
>>> class Baz(NiceRepr): | |
... def __len__(self): | |
... return 5 | |
>>> baz = Baz() | |
>>> assert str(baz) == '<Baz(5)>' | |
""" | |
def __nice__(self): | |
"""str: a "nice" summary string describing this module""" | |
if hasattr(self, "__len__"): | |
# It is a common pattern for objects to use __len__ in __nice__ | |
# As a convenience we define a default __nice__ for these objects | |
return str(len(self)) | |
else: | |
# In all other cases force the subclass to overload __nice__ | |
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}") | |
def __repr__(self): | |
"""str: the string of the module""" | |
try: | |
nice = self.__nice__() | |
classname = self.__class__.__name__ | |
return f"<{classname}({nice}) at {hex(id(self))}>" | |
except NotImplementedError as ex: | |
warnings.warn(str(ex), category=RuntimeWarning) | |
return object.__repr__(self) | |
def __str__(self): | |
"""str: the string of the module""" | |
try: | |
classname = self.__class__.__name__ | |
nice = self.__nice__() | |
return f"<{classname}({nice})>" | |
except NotImplementedError as ex: | |
warnings.warn(str(ex), category=RuntimeWarning) | |
return object.__repr__(self) | |
def ensure_rng(rng=None): | |
"""Coerces input into a random number generator. | |
If the input is None, then a global random state is returned. | |
If the input is a numeric value, then that is used as a seed to construct a | |
random state. Otherwise the input is returned as-is. | |
Adapted from [1]_. | |
Args: | |
rng (int | numpy.random.RandomState | None): | |
if None, then defaults to the global rng. Otherwise this can be an | |
integer or a RandomState class | |
Returns: | |
(numpy.random.RandomState) : rng - | |
a numpy random number generator | |
References: | |
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 | |
""" | |
if rng is None: | |
rng = np.random.mtrand._rand | |
elif isinstance(rng, int): | |
rng = np.random.RandomState(rng) | |
else: | |
rng = rng | |
return rng | |
def random_boxes(num=1, scale=1, rng=None): | |
"""Simple version of ``kwimage.Boxes.random`` | |
Returns: | |
Tensor: shape (n, 4) in x1, y1, x2, y2 format. | |
References: | |
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 | |
Example: | |
>>> num = 3 | |
>>> scale = 512 | |
>>> rng = 0 | |
>>> boxes = random_boxes(num, scale, rng) | |
>>> print(boxes) | |
tensor([[280.9925, 278.9802, 308.6148, 366.1769], | |
[216.9113, 330.6978, 224.0446, 456.5878], | |
[405.3632, 196.3221, 493.3953, 270.7942]]) | |
""" | |
rng = ensure_rng(rng) | |
tlbr = rng.rand(num, 4).astype(np.float32) | |
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) | |
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) | |
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) | |
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) | |
tlbr[:, 0] = tl_x * scale | |
tlbr[:, 1] = tl_y * scale | |
tlbr[:, 2] = br_x * scale | |
tlbr[:, 3] = br_y * scale | |
boxes = torch.from_numpy(tlbr) | |
return boxes | |
class ModelEma(torch.nn.Module): | |
def __init__(self, model, decay=0.9997, device=None): | |
super(ModelEma, self).__init__() | |
# make a copy of the model for accumulating moving average of weights | |
self.module = deepcopy(model) | |
self.module.eval() | |
# import ipdb; ipdb.set_trace() | |
self.decay = decay | |
self.device = device # perform ema on different device from model if set | |
if self.device is not None: | |
self.module.to(device=device) | |
def _update(self, model, update_fn): | |
with torch.no_grad(): | |
for ema_v, model_v in zip( | |
self.module.state_dict().values(), model.state_dict().values() | |
): | |
if self.device is not None: | |
model_v = model_v.to(device=self.device) | |
ema_v.copy_(update_fn(ema_v, model_v)) | |
def update(self, model): | |
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m) | |
def set(self, model): | |
self._update(model, update_fn=lambda e, m: m) | |
class BestMetricSingle: | |
def __init__(self, init_res=0.0, better="large") -> None: | |
self.init_res = init_res | |
self.best_res = init_res | |
self.best_ep = -1 | |
self.better = better | |
assert better in ["large", "small"] | |
def isbetter(self, new_res, old_res): | |
if self.better == "large": | |
return new_res > old_res | |
if self.better == "small": | |
return new_res < old_res | |
def update(self, new_res, ep): | |
if self.isbetter(new_res, self.best_res): | |
self.best_res = new_res | |
self.best_ep = ep | |
return True | |
return False | |
def __str__(self) -> str: | |
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep) | |
def __repr__(self) -> str: | |
return self.__str__() | |
def summary(self) -> dict: | |
return { | |
"best_res": self.best_res, | |
"best_ep": self.best_ep, | |
} | |
class BestMetricHolder: | |
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None: | |
self.best_all = BestMetricSingle(init_res, better) | |
self.use_ema = use_ema | |
if use_ema: | |
self.best_ema = BestMetricSingle(init_res, better) | |
self.best_regular = BestMetricSingle(init_res, better) | |
def update(self, new_res, epoch, is_ema=False): | |
""" | |
return if the results is the best. | |
""" | |
if not self.use_ema: | |
return self.best_all.update(new_res, epoch) | |
else: | |
if is_ema: | |
self.best_ema.update(new_res, epoch) | |
return self.best_all.update(new_res, epoch) | |
else: | |
self.best_regular.update(new_res, epoch) | |
return self.best_all.update(new_res, epoch) | |
def summary(self): | |
if not self.use_ema: | |
return self.best_all.summary() | |
res = {} | |
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()}) | |
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()}) | |
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()}) | |
return res | |
def __repr__(self) -> str: | |
return json.dumps(self.summary(), indent=2) | |
def __str__(self) -> str: | |
return self.__repr__() | |
def targets_to(targets: List[Dict[str, Any]], device): | |
"""Moves the target dicts to the given device.""" | |
excluded_keys = [ | |
"questionId", | |
"tokens_positive", | |
"strings_positive", | |
"tokens", | |
"dataset_name", | |
"sentence_id", | |
"original_img_id", | |
"nb_eval", | |
"task_id", | |
"original_id", | |
"token_span", | |
"caption", | |
"dataset_type", | |
] | |
return [ | |
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets | |
] | |
def get_phrases_from_posmap( | |
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer | |
): | |
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor" | |
if posmap.dim() == 1: | |
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist() | |
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx] | |
return tokenizer.decode(token_ids) | |
else: | |
raise NotImplementedError("posmap must be 1-dim") | |