Spaces:
Running
Running
File size: 10,087 Bytes
3f75218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
import copy
import math
import torch
import torch.nn.functional as F
from torch import Tensor, nn
def _get_clones(module, N, layer_share=False):
# import ipdb; ipdb.set_trace()
if layer_share:
return nn.ModuleList([module for i in range(N)])
else:
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def get_sine_pos_embed(
pos_tensor: torch.Tensor,
num_pos_feats: int = 128,
temperature: int = 10000,
exchange_xy: bool = True,
):
"""generate sine position embedding from a position tensor
Args:
pos_tensor (torch.Tensor): shape: [..., n].
num_pos_feats (int): projected shape for each float in the tensor.
temperature (int): temperature in the sine/cosine function.
exchange_xy (bool, optional): exchange pos x and pos y. \
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
Returns:
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
"""
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
def sine_func(x: torch.Tensor):
sin_x = x * scale / dim_t
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
return sin_x
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
if exchange_xy:
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
pos_res = torch.cat(pos_res, dim=-1)
return pos_res
def gen_encoder_output_proposals(
memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
):
"""
Input:
- memory: bs, \sum{hw}, d_model
- memory_padding_mask: bs, \sum{hw}
- spatial_shapes: nlevel, 2
- learnedwh: 2
Output:
- output_memory: bs, \sum{hw}, d_model
- output_proposals: bs, \sum{hw}, 4
"""
N_, S_, C_ = memory.shape
proposals = []
_cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
# import ipdb; ipdb.set_trace()
grid_y, grid_x = torch.meshgrid(
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
)
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
if learnedwh is not None:
# import ipdb; ipdb.set_trace()
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
else:
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
# wh = torch.ones_like(grid) / scale
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
proposals.append(proposal)
_cur += H_ * W_
# import ipdb; ipdb.set_trace()
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(
-1, keepdim=True
)
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
output_memory = memory
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
return output_memory, output_proposals
class RandomBoxPerturber:
def __init__(
self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
) -> None:
self.noise_scale = torch.Tensor(
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
)
def __call__(self, refanchors: Tensor) -> Tensor:
nq, bs, query_dim = refanchors.shape
device = refanchors.device
noise_raw = torch.rand_like(refanchors)
noise_scale = self.noise_scale.to(device)[:query_dim]
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
return new_refanchors.clamp_(0, 1)
def sigmoid_focal_loss(
inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False
):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if no_reduction:
return loss
return loss.mean(1).sum() / num_boxes
class MLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def _get_activation_fn(activation, d_model=256, batch_dim=0):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
if activation == "prelu":
return nn.PReLU()
if activation == "selu":
return F.selu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
def gen_sineembed_for_position(pos_tensor):
# n_query, bs, _ = pos_tensor.size()
# sineembed_tensor = torch.zeros(n_query, bs, 256)
scale = 2 * math.pi
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
return pos
class ContrastiveEmbed(nn.Module):
def __init__(self, max_text_len=256):
"""
Args:
max_text_len: max length of text.
"""
super().__init__()
self.max_text_len = max_text_len
def forward(self, x, text_dict):
"""_summary_
Args:
x (_type_): _description_
text_dict (_type_): _description_
{
'encoded_text': encoded_text, # bs, 195, d_model
'text_token_mask': text_token_mask, # bs, 195
# True for used tokens. False for padding tokens
}
Returns:
_type_: _description_
"""
assert isinstance(text_dict, dict)
y = text_dict["encoded_text"]
text_token_mask = text_dict["text_token_mask"]
res = x @ y.transpose(-1, -2)
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
# padding to max_text_len
new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device)
new_res[..., : res.shape[-1]] = res
return new_res
|