Spaces:
Sleeping
Sleeping
File size: 93,770 Bytes
d8d14f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 |
import asyncio
import json
import logging
import os
import random
import threading
import time
import uuid
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Tuple,
Union,
)
import toml
import yaml
from loguru import logger
from pydantic import BaseModel
from swarm_models.tiktoken_wrapper import TikTokenizer
from swarms.agents.ape_agent import auto_generate_prompt
from swarms.artifacts.main_artifact import Artifact
from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
)
from swarms.prompts.tools import tool_sop_prompt
from swarms.schemas.agent_step_schemas import ManySteps, Step
from swarms.schemas.base_schemas import (
AgentChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessageResponse,
)
from swarms.structs.concat import concat_strings
from swarms.structs.conversation import Conversation
from swarms.structs.safe_loading import (
SafeLoaderUtils,
SafeStateManager,
)
from swarms.tools.base_tool import BaseTool
from swarms.tools.tool_parse_exec import parse_and_execute_json
from swarms.utils.data_to_text import data_to_text
from swarms.utils.file_processing import create_file_in_folder
from swarms.utils.formatter import formatter
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.wrapper_clusterop import (
exec_callable_with_clusterops,
)
# Utils
# Custom stopping condition
def stop_when_repeats(response: str) -> bool:
# Stop if the word stop appears in the response
return "stop" in response.lower()
# Parse done token
def parse_done_token(response: str) -> bool:
"""Parse the response to see if the done token is present"""
return "<DONE>" in response
# Agent ID generator
def agent_id():
"""Generate an agent id"""
return uuid.uuid4().hex
def exists(val):
return val is not None
# Agent output types
# agent_output_type = Union[BaseModel, dict, str]
agent_output_type = Literal[
"string", "str", "list", "json", "dict", "yaml", "json_schema"
]
ToolUsageType = Union[BaseModel, Dict[str, Any]]
# [FEAT][AGENT]
class Agent:
"""
Agent is the backbone to connect LLMs with tools and long term memory. Agent also provides the ability to
ingest any type of docs like PDFs, Txts, Markdown, Json, and etc for the agent. Here is a list of features.
Args:
llm (Any): The language model to use
template (str): The template to use
max_loops (int): The maximum number of loops to run
stopping_condition (Callable): The stopping condition to use
loop_interval (int): The loop interval
retry_attempts (int): The number of retry attempts
retry_interval (int): The retry interval
return_history (bool): Return the history
stopping_token (str): The stopping token
dynamic_loops (bool): Enable dynamic loops
interactive (bool): Enable interactive mode
dashboard (bool): Enable dashboard
agent_name (str): The name of the agent
agent_description (str): The description of the agent
system_prompt (str): The system prompt
tools (List[BaseTool]): The tools to use
dynamic_temperature_enabled (bool): Enable dynamic temperature
sop (str): The standard operating procedure
sop_list (List[str]): The standard operating procedure list
saved_state_path (str): The path to the saved state
autosave (bool): Autosave the state
context_length (int): The context length
user_name (str): The user name
self_healing_enabled (bool): Enable self healing
code_interpreter (bool): Enable code interpreter
multi_modal (bool): Enable multimodal
pdf_path (str): The path to the pdf
list_of_pdf (str): The list of pdf
tokenizer (Any): The tokenizer
long_term_memory (BaseVectorDatabase): The long term memory
preset_stopping_token (bool): Enable preset stopping token
traceback (Any): The traceback
traceback_handlers (Any): The traceback handlers
streaming_on (bool): Enable streaming
docs (List[str]): The list of documents
docs_folder (str): The folder containing the documents
verbose (bool): Enable verbose mode
parser (Callable): The parser to use
best_of_n (int): The number of best responses to return
callback (Callable): The callback function
metadata (Dict[str, Any]): The metadata
callbacks (List[Callable]): The list of callback functions
search_algorithm (Callable): The search algorithm
logs_to_filename (str): The filename for the logs
evaluator (Callable): The evaluator function
stopping_func (Callable): The stopping function
custom_loop_condition (Callable): The custom loop condition
sentiment_threshold (float): The sentiment threshold
custom_exit_command (str): The custom exit command
sentiment_analyzer (Callable): The sentiment analyzer
limit_tokens_from_string (Callable): The function to limit tokens from a string
custom_tools_prompt (Callable): The custom tools prompt
tool_schema (ToolUsageType): The tool schema
output_type (agent_output_type): The output type
function_calling_type (str): The function calling type
output_cleaner (Callable): The output cleaner function
function_calling_format_type (str): The function calling format type
list_base_models (List[BaseModel]): The list of base models
metadata_output_type (str): The metadata output type
state_save_file_type (str): The state save file type
chain_of_thoughts (bool): Enable chain of thoughts
algorithm_of_thoughts (bool): Enable algorithm of thoughts
tree_of_thoughts (bool): Enable tree of thoughts
tool_choice (str): The tool choice
execute_tool (bool): Enable tool execution
rules (str): The rules
planning (str): The planning
planning_prompt (str): The planning prompt
device (str): The device
custom_planning_prompt (str): The custom planning prompt
memory_chunk_size (int): The memory chunk size
agent_ops_on (bool): Enable agent operations
log_directory (str): The log directory
tool_system_prompt (str): The tool system prompt
max_tokens (int): The maximum number of tokens
frequency_penalty (float): The frequency penalty
presence_penalty (float): The presence penalty
temperature (float): The temperature
workspace_dir (str): The workspace directory
timeout (int): The timeout
artifacts_on (bool): Enable artifacts
artifacts_output_path (str): The artifacts output path
artifacts_file_extension (str): The artifacts file extension (.pdf, .md, .txt, )
scheduled_run_date (datetime): The date and time to schedule the task
Methods:
run: Run the agent
run_concurrent: Run the agent concurrently
bulk_run: Run the agent in bulk
save: Save the agent
load: Load the agent
validate_response: Validate the response
print_history_and_memory: Print the history and memory
step: Step through the agent
graceful_shutdown: Gracefully shutdown the agent
run_with_timeout: Run the agent with a timeout
analyze_feedback: Analyze the feedback
undo_last: Undo the last response
add_response_filter: Add a response filter
apply_response_filters: Apply the response filters
filtered_run: Run the agent with filtered responses
interactive_run: Run the agent in interactive mode
streamed_generation: Stream the generation of the response
save_state: Save the state
truncate_history: Truncate the history
add_task_to_memory: Add the task to the memory
print_dashboard: Print the dashboard
loop_count_print: Print the loop count
streaming: Stream the content
_history: Generate the history
_dynamic_prompt_setup: Setup the dynamic prompt
run_async: Run the agent asynchronously
run_async_concurrent: Run the agent asynchronously and concurrently
run_async_concurrent: Run the agent asynchronously and concurrently
construct_dynamic_prompt: Construct the dynamic prompt
handle_artifacts: Handle artifacts
Examples:
>>> from swarm_models import OpenAIChat
>>> from swarms.structs import Agent
>>> llm = OpenAIChat()
>>> agent = Agent(llm=llm, max_loops=1)
>>> response = agent.run("Generate a report on the financials.")
>>> print(response)
>>> # Generate a report on the financials.
"""
def __init__(
self,
agent_id: Optional[str] = agent_id(),
id: Optional[str] = agent_id(),
llm: Optional[Any] = None,
template: Optional[str] = None,
max_loops: Optional[int] = 1,
stopping_condition: Optional[Callable[[str], bool]] = None,
loop_interval: Optional[int] = 0,
retry_attempts: Optional[int] = 3,
retry_interval: Optional[int] = 1,
return_history: Optional[bool] = False,
stopping_token: Optional[str] = None,
dynamic_loops: Optional[bool] = False,
interactive: Optional[bool] = False,
dashboard: Optional[bool] = False,
agent_name: Optional[str] = "swarm-worker-01",
agent_description: Optional[str] = None,
system_prompt: Optional[str] = AGENT_SYSTEM_PROMPT_3,
# TODO: Change to callable, then parse the callable to a string
tools: List[Callable] = None,
dynamic_temperature_enabled: Optional[bool] = False,
sop: Optional[str] = None,
sop_list: Optional[List[str]] = None,
saved_state_path: Optional[str] = None,
autosave: Optional[bool] = False,
context_length: Optional[int] = 8192,
user_name: Optional[str] = "Human:",
self_healing_enabled: Optional[bool] = False,
code_interpreter: Optional[bool] = False,
multi_modal: Optional[bool] = None,
pdf_path: Optional[str] = None,
list_of_pdf: Optional[str] = None,
tokenizer: Optional[Any] = None,
long_term_memory: Optional[Any] = None,
preset_stopping_token: Optional[bool] = False,
traceback: Optional[Any] = None,
traceback_handlers: Optional[Any] = None,
streaming_on: Optional[bool] = False,
docs: List[str] = None,
docs_folder: Optional[str] = None,
verbose: Optional[bool] = False,
parser: Optional[Callable] = None,
best_of_n: Optional[int] = None,
callback: Optional[Callable] = None,
metadata: Optional[Dict[str, Any]] = None,
callbacks: Optional[List[Callable]] = None,
search_algorithm: Optional[Callable] = None,
logs_to_filename: Optional[str] = None,
evaluator: Optional[Callable] = None, # Custom LLM or agent
stopping_func: Optional[Callable] = None,
custom_loop_condition: Optional[Callable] = None,
sentiment_threshold: Optional[
float
] = None, # Evaluate on output using an external model
custom_exit_command: Optional[str] = "exit",
sentiment_analyzer: Optional[Callable] = None,
limit_tokens_from_string: Optional[Callable] = None,
# [Tools]
custom_tools_prompt: Optional[Callable] = None,
tool_schema: ToolUsageType = None,
output_type: agent_output_type = "str",
function_calling_type: str = "json",
output_cleaner: Optional[Callable] = None,
function_calling_format_type: Optional[str] = "OpenAI",
list_base_models: Optional[List[BaseModel]] = None,
metadata_output_type: str = "json",
state_save_file_type: str = "json",
chain_of_thoughts: bool = False,
algorithm_of_thoughts: bool = False,
tree_of_thoughts: bool = False,
tool_choice: str = "auto",
rules: str = None, # type: ignore
planning: Optional[str] = False,
planning_prompt: Optional[str] = None,
custom_planning_prompt: str = None,
memory_chunk_size: int = 2000,
agent_ops_on: bool = False,
log_directory: str = None,
tool_system_prompt: str = tool_sop_prompt(),
max_tokens: int = 4096,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
temperature: float = 0.1,
workspace_dir: str = "agent_workspace",
timeout: Optional[int] = None,
# short_memory: Optional[str] = None,
created_at: float = time.time(),
return_step_meta: Optional[bool] = False,
tags: Optional[List[str]] = None,
use_cases: Optional[List[Dict[str, str]]] = None,
step_pool: List[Step] = [],
print_every_step: Optional[bool] = False,
time_created: Optional[str] = time.strftime(
"%Y-%m-%d %H:%M:%S", time.localtime()
),
agent_output: ManySteps = None,
executor_workers: int = os.cpu_count(),
data_memory: Optional[Callable] = None,
load_yaml_path: str = None,
auto_generate_prompt: bool = False,
rag_every_loop: bool = False,
plan_enabled: bool = False,
artifacts_on: bool = False,
artifacts_output_path: str = None,
artifacts_file_extension: str = None,
device: str = "cpu",
all_cores: bool = True,
device_id: int = 0,
scheduled_run_date: Optional[datetime] = None,
do_not_use_cluster_ops: bool = True,
all_gpus: bool = False,
model_name: str = None,
llm_args: dict = None,
load_state_path: str = None,
*args,
**kwargs,
):
# super().__init__(*args, **kwargs)
self.agent_id = agent_id
self.id = id
self.llm = llm
self.template = template
self.max_loops = max_loops
self.stopping_condition = stopping_condition
self.loop_interval = loop_interval
self.retry_attempts = retry_attempts
self.retry_interval = retry_interval
self.task = None
self.stopping_token = stopping_token
self.interactive = interactive
self.dashboard = dashboard
self.return_history = return_history
self.dynamic_temperature_enabled = dynamic_temperature_enabled
self.dynamic_loops = dynamic_loops
self.user_name = user_name
self.context_length = context_length
self.sop = sop
self.sop_list = sop_list
self.tools = tools
self.system_prompt = system_prompt
self.agent_name = agent_name
self.agent_description = agent_description
self.saved_state_path = f"{self.agent_name}_state.json"
self.autosave = autosave
self.response_filters = []
self.self_healing_enabled = self_healing_enabled
self.code_interpreter = code_interpreter
self.multi_modal = multi_modal
self.pdf_path = pdf_path
self.list_of_pdf = list_of_pdf
self.tokenizer = tokenizer
self.long_term_memory = long_term_memory
self.preset_stopping_token = preset_stopping_token
self.traceback = traceback
self.traceback_handlers = traceback_handlers
self.streaming_on = streaming_on
self.docs = docs
self.docs_folder = docs_folder
self.verbose = verbose
self.parser = parser
self.best_of_n = best_of_n
self.callback = callback
self.metadata = metadata
self.callbacks = callbacks
self.search_algorithm = search_algorithm
self.logs_to_filename = logs_to_filename
self.evaluator = evaluator
self.stopping_func = stopping_func
self.custom_loop_condition = custom_loop_condition
self.sentiment_threshold = sentiment_threshold
self.custom_exit_command = custom_exit_command
self.sentiment_analyzer = sentiment_analyzer
self.limit_tokens_from_string = limit_tokens_from_string
self.tool_schema = tool_schema
self.output_type = output_type
self.function_calling_type = function_calling_type
self.output_cleaner = output_cleaner
self.function_calling_format_type = (
function_calling_format_type
)
self.list_base_models = list_base_models
self.metadata_output_type = metadata_output_type
self.state_save_file_type = state_save_file_type
self.chain_of_thoughts = chain_of_thoughts
self.algorithm_of_thoughts = algorithm_of_thoughts
self.tree_of_thoughts = tree_of_thoughts
self.tool_choice = tool_choice
self.planning = planning
self.planning_prompt = planning_prompt
self.custom_planning_prompt = custom_planning_prompt
self.rules = rules
self.custom_tools_prompt = custom_tools_prompt
self.memory_chunk_size = memory_chunk_size
self.agent_ops_on = agent_ops_on
self.log_directory = log_directory
self.tool_system_prompt = tool_system_prompt
self.max_tokens = max_tokens
self.frequency_penalty = frequency_penalty
self.presence_penalty = presence_penalty
self.temperature = temperature
self.workspace_dir = workspace_dir
self.timeout = timeout
self.created_at = created_at
self.return_step_meta = return_step_meta
self.tags = tags
self.use_cases = use_cases
self.name = agent_name
self.description = agent_description
self.agent_output = agent_output
self.step_pool = step_pool
self.print_every_step = print_every_step
self.time_created = time_created
self.data_memory = data_memory
self.load_yaml_path = load_yaml_path
self.tokenizer = TikTokenizer()
self.auto_generate_prompt = auto_generate_prompt
self.rag_every_loop = rag_every_loop
self.plan_enabled = plan_enabled
self.artifacts_on = artifacts_on
self.artifacts_output_path = artifacts_output_path
self.artifacts_file_extension = artifacts_file_extension
self.device = device
self.all_cores = all_cores
self.device_id = device_id
self.scheduled_run_date = scheduled_run_date
self.do_not_use_cluster_ops = do_not_use_cluster_ops
self.all_gpus = all_gpus
self.model_name = model_name
self.llm_args = llm_args
self.load_state_path = load_state_path
# Initialize the short term memory
self.short_memory = Conversation(
system_prompt=system_prompt,
time_enabled=True,
user=user_name,
rules=rules,
*args,
**kwargs,
)
# Initialize the feedback
self.feedback = []
# Initialize the executor
self.executor = ThreadPoolExecutor(
max_workers=executor_workers
)
# Initialize the tool struct
if (
exists(tools)
or exists(list_base_models)
or exists(tool_schema)
):
self.tool_struct = BaseTool(
tools=tools,
base_models=list_base_models,
tool_system_prompt=tool_system_prompt,
)
# The max_loops will be set dynamically if the dynamic_loop
if self.dynamic_loops is True:
logger.info("Dynamic loops enabled")
self.max_loops = "auto"
# If multimodal = yes then set the sop to the multimodal sop
if self.multi_modal is True:
self.sop = MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1
# If the preset stopping token is enabled then set the stopping token to the preset stopping token
if preset_stopping_token is not None:
self.stopping_token = "<DONE>"
# If the docs exist then ingest the docs
if exists(self.docs):
threading.Thread(
target=self.ingest_docs, args=(self.docs)
).start()
# If docs folder exists then get the docs from docs folder
if exists(self.docs_folder):
threading.Thread(
target=self.get_docs_from_doc_folders
).start()
if tools is not None:
logger.info(
"Tools provided make sure the functions have documentation ++ type hints, otherwise tool execution won't be reliable."
)
# Add the tool prompt to the memory
self.short_memory.add(
role="system", content=tool_system_prompt
)
# Log the tools
logger.info(
f"Tools provided: Accessing {len(tools)} tools"
)
# Transform the tools into an openai schema
# self.convert_tool_into_openai_schema()
# Transform the tools into an openai schema
tool_dict = (
self.tool_struct.convert_tool_into_openai_schema()
)
self.short_memory.add(role="system", content=tool_dict)
# Now create a function calling map for every tools
self.function_map = {
tool.__name__: tool for tool in tools
}
# If the tool schema exists or a list of base models exists then convert the tool schema into an openai schema
if exists(tool_schema) or exists(list_base_models):
threading.Thread(
target=self.handle_tool_schema_ops()
).start()
# If the sop or sop_list exists then handle the sop ops
if exists(self.sop) or exists(self.sop_list):
threading.Thread(target=self.handle_sop_ops()).start()
# If agent_ops is on => activate agentops
if agent_ops_on is True:
threading.Thread(target=self.activate_agentops()).start()
# Many steps
self.agent_output = ManySteps(
agent_id=agent_id,
agent_name=agent_name,
# run_id=run_id,
task="",
max_loops=self.max_loops,
steps=self.short_memory.to_dict(),
full_history=self.short_memory.get_str(),
total_tokens=self.tokenizer.count_tokens(
self.short_memory.get_str()
),
stopping_token=self.stopping_token,
interactive=self.interactive,
dynamic_temperature_enabled=self.dynamic_temperature_enabled,
)
# Telemetry Processor to log agent data
threading.Thread(target=self.log_agent_data).start()
if self.llm is None and self.model_name is not None:
self.llm = self.llm_handling()
def llm_handling(self):
from swarms.utils.litellm_wrapper import LiteLLM
if self.llm_args is not None:
llm = LiteLLM(model_name=self.model_name, **self.llm_args)
else:
llm = LiteLLM(
model_name=self.model_name,
temperature=self.temperature,
max_tokens=self.max_tokens,
)
return llm
def check_if_no_prompt_then_autogenerate(self, task: str = None):
"""
Checks if auto_generate_prompt is enabled and generates a prompt by combining agent name, description and system prompt if available.
Falls back to task if all other fields are missing.
Args:
task (str, optional): The task to use as a fallback if name, description and system prompt are missing. Defaults to None.
"""
if self.auto_generate_prompt is True:
# Collect all available prompt components
components = []
if self.agent_name:
components.append(self.agent_name)
if self.agent_description:
components.append(self.agent_description)
if self.system_prompt:
components.append(self.system_prompt)
# If no components available, fall back to task
if not components and task:
logger.warning(
"No agent details found. Using task as fallback for prompt generation."
)
self.system_prompt = auto_generate_prompt(
task, self.llm
)
else:
# Combine all available components
combined_prompt = " ".join(components)
logger.info(
f"Auto-generating prompt from: {', '.join(components)}"
)
self.system_prompt = auto_generate_prompt(
combined_prompt, self.llm
)
self.short_memory.add(
role="system", content=self.system_prompt
)
logger.info("Auto-generated prompt successfully.")
def set_system_prompt(self, system_prompt: str):
"""Set the system prompt"""
self.system_prompt = system_prompt
def provide_feedback(self, feedback: str) -> None:
"""Allow users to provide feedback on the responses."""
self.feedback.append(feedback)
logging.info(f"Feedback received: {feedback}")
def agent_initialization(self):
try:
logger.info(
f"Initializing Autonomous Agent {self.agent_name}..."
)
self.check_parameters()
logger.info(
f"{self.agent_name} Initialized Successfully."
)
logger.info(
f"Autonomous Agent {self.agent_name} Activated, all systems operational. Executing task..."
)
if self.dashboard is True:
self.print_dashboard()
except ValueError as e:
logger.info(f"Error initializing agent: {e}")
raise e
def _check_stopping_condition(self, response: str) -> bool:
"""Check if the stopping condition is met."""
try:
if self.stopping_condition:
return self.stopping_condition(response)
return False
except Exception as error:
logger.error(
f"Error checking stopping condition: {error}"
)
def dynamic_temperature(self):
"""
1. Check the self.llm object for the temperature
2. If the temperature is not present, then use the default temperature
3. If the temperature is present, then dynamically change the temperature
4. for every loop you can randomly change the temperature on a scale from 0.0 to 1.0
"""
try:
if hasattr(self.llm, "temperature"):
# Randomly change the temperature attribute of self.llm object
self.llm.temperature = random.uniform(0.0, 1.0)
else:
# Use a default temperature
self.llm.temperature = 0.5
except Exception as error:
logger.error(
f"Error dynamically changing temperature: {error}"
)
def print_dashboard(self):
"""Print dashboard"""
formatter.print_panel(
f"Initializing Agent: {self.agent_name}"
)
data = self.to_dict()
# Beautify the data
# data = json.dumps(data, indent=4)
# json_data = json.dumps(data, indent=4)
formatter.print_panel(
f"""
Agent Dashboard
--------------------------------------------
Agent {self.agent_name} is initializing for {self.max_loops} with the following configuration:
----------------------------------------
Agent Configuration:
Configuration: {data}
----------------------------------------
""",
)
def loop_count_print(
self, loop_count: int, max_loops: int
) -> None:
"""loop_count_print summary
Args:
loop_count (_type_): _description_
max_loops (_type_): _description_
"""
logger.info(f"\nLoop {loop_count} of {max_loops}")
print("\n")
# Check parameters
def check_parameters(self):
if self.llm is None:
raise ValueError(
"Language model is not provided. Choose a model from the available models in swarm_models or create a class with a run(task: str) method and or a __call__ method."
)
if self.max_loops is None or self.max_loops == 0:
raise ValueError("Max loops is not provided")
if self.max_tokens == 0 or self.max_tokens is None:
raise ValueError("Max tokens is not provided")
if self.context_length == 0 or self.context_length is None:
raise ValueError("Context length is not provided")
# Main function
def _run(
self,
task: Optional[str] = None,
img: Optional[str] = None,
speech: Optional[str] = None,
video: Optional[str] = None,
is_last: Optional[bool] = False,
print_task: Optional[bool] = False,
generate_speech: Optional[bool] = False,
*args,
**kwargs,
) -> Any:
"""
run the agent
Args:
task (str): The task to be performed.
img (str): The image to be processed.
is_last (bool): Indicates if this is the last task.
Returns:
Any: The output of the agent.
(string, list, json, dict, yaml)
Examples:
agent(task="What is the capital of France?")
agent(task="What is the capital of France?", img="path/to/image.jpg")
agent(task="What is the capital of France?", img="path/to/image.jpg", is_last=True)
"""
try:
self.check_if_no_prompt_then_autogenerate(task)
self.agent_output.task = task
# Add task to memory
self.short_memory.add(role=self.user_name, content=task)
# Plan
if self.plan_enabled is True:
self.plan(task)
# Set the loop count
loop_count = 0
# Clear the short memory
response = None
all_responses = []
# Query the long term memory first for the context
if self.long_term_memory is not None:
self.memory_query(task)
# Print the user's request
if self.autosave:
self.save()
# Print the request
if print_task is True:
formatter.print_panel(
f"\n User: {task}",
f"Task Request for {self.agent_name}",
)
while (
self.max_loops == "auto"
or loop_count < self.max_loops
):
loop_count += 1
self.loop_count_print(loop_count, self.max_loops)
print("\n")
# Dynamic temperature
if self.dynamic_temperature_enabled is True:
self.dynamic_temperature()
# Task prompt
task_prompt = (
self.short_memory.return_history_as_string()
)
# Parameters
attempt = 0
success = False
while attempt < self.retry_attempts and not success:
try:
if (
self.long_term_memory is not None
and self.rag_every_loop is True
):
logger.info(
"Querying RAG database for context..."
)
self.memory_query(task_prompt)
# Generate response using LLM
response_args = (
(task_prompt, *args)
if img is None
else (task_prompt, img, *args)
)
response = self.call_llm(
*response_args, **kwargs
)
# Convert to a str if the response is not a str
response = self.llm_output_parser(response)
# Print
if self.streaming_on is True:
# self.stream_response(response)
formatter.print_panel_token_by_token(
f"{self.agent_name}: {response}",
title=f"Agent Name: {self.agent_name} [Max Loops: {loop_count}]",
)
else:
# logger.info(f"Response: {response}")
formatter.print_panel(
f"{self.agent_name}: {response}",
f"Agent Name {self.agent_name} [Max Loops: {loop_count} ]",
)
# Check if response is a dictionary and has 'choices' key
if (
isinstance(response, dict)
and "choices" in response
):
response = response["choices"][0][
"message"
]["content"]
elif isinstance(response, str):
# If response is already a string, use it as is
pass
else:
raise ValueError(
f"Unexpected response format: {type(response)}"
)
# Check and execute tools
if self.tools is not None:
self.parse_and_execute_tools(response)
# Add the response to the memory
self.short_memory.add(
role=self.agent_name, content=response
)
# Add to all responses
all_responses.append(response)
# # TODO: Implement reliability check
if self.evaluator:
logger.info("Evaluating response...")
evaluated_response = self.evaluator(
response
)
print(
"Evaluated Response:"
f" {evaluated_response}"
)
self.short_memory.add(
role="Evaluator",
content=evaluated_response,
)
# Sentiment analysis
if self.sentiment_analyzer:
logger.info("Analyzing sentiment...")
self.sentiment_analysis_handler(response)
success = True # Mark as successful to exit the retry loop
except Exception as e:
self.log_agent_data()
if self.autosave is True:
self.save()
logger.error(
f"Attempt {attempt+1}: Error generating"
f" response: {e}"
)
attempt += 1
if not success:
self.log_agent_data()
if self.autosave is True:
self.save()
logger.error(
"Failed to generate a valid response after"
" retry attempts."
)
break # Exit the loop if all retry attempts fail
# Check stopping conditions
if (
self.stopping_condition is not None
and self._check_stopping_condition(response)
):
logger.info("Stopping condition met.")
break
elif (
self.stopping_func is not None
and self.stopping_func(response)
):
logger.info("Stopping function met.")
break
if self.interactive:
logger.info("Interactive mode enabled.")
user_input = input("You: ")
# User-defined exit command
if (
user_input.lower()
== self.custom_exit_command.lower()
):
print("Exiting as per user request.")
break
self.short_memory.add(
role=self.user_name, content=user_input
)
if self.loop_interval:
logger.info(
f"Sleeping for {self.loop_interval} seconds"
)
time.sleep(self.loop_interval)
if self.autosave is True:
self.log_agent_data()
if self.autosave is True:
self.save()
# Apply the cleaner function to the response
if self.output_cleaner is not None:
logger.info("Applying output cleaner to response.")
response = self.output_cleaner(response)
logger.info(
f"Response after output cleaner: {response}"
)
self.short_memory.add(
role="Output Cleaner",
content=response,
)
if self.agent_ops_on is True and is_last is True:
self.check_end_session_agentops()
# Merge all responses
all_responses = [
response
for response in all_responses
if response is not None
]
self.agent_output.steps = self.short_memory.to_dict()
self.agent_output.full_history = (
self.short_memory.get_str()
)
self.agent_output.total_tokens = (
self.tokenizer.count_tokens(
self.short_memory.get_str()
)
)
# Handle artifacts
if self.artifacts_on is True:
self.handle_artifacts(
concat_strings(all_responses),
self.artifacts_output_path,
self.artifacts_file_extension,
)
self.log_agent_data()
if self.autosave is True:
self.save()
# More flexible output types
if (
self.output_type == "string"
or self.output_type == "str"
):
return concat_strings(all_responses)
elif self.output_type == "list":
return all_responses
elif (
self.output_type == "json"
or self.return_step_meta is True
):
return self.agent_output.model_dump_json(indent=4)
elif self.output_type == "csv":
return self.dict_to_csv(
self.agent_output.model_dump()
)
elif self.output_type == "dict":
return self.agent_output.model_dump()
elif self.output_type == "yaml":
return yaml.safe_dump(
self.agent_output.model_dump(), sort_keys=False
)
elif self.return_history is True:
history = self.short_memory.get_str()
formatter.print_panel(
history, title=f"{self.agent_name} History"
)
return history
else:
raise ValueError(
f"Invalid output type: {self.output_type}"
)
except Exception as error:
self._handle_run_error(error)
except KeyboardInterrupt as error:
self._handle_run_error(error)
def _handle_run_error(self, error: any):
self.log_agent_data()
if self.autosave is True:
self.save()
logger.info(
f"Error detected running your agent {self.agent_name} \n Error {error} \n Optimize your input parameters and or add an issue on the swarms github and contact our team on discord for support ;) "
)
raise error
async def arun(
self,
task: Optional[str] = None,
img: Optional[str] = None,
is_last: bool = False,
device: str = "cpu", # gpu
device_id: int = 1,
all_cores: bool = True,
do_not_use_cluster_ops: bool = True,
all_gpus: bool = False,
*args,
**kwargs,
) -> Any:
"""
Asynchronously runs the agent with the specified parameters.
Args:
task (Optional[str]): The task to be performed. Defaults to None.
img (Optional[str]): The image to be processed. Defaults to None.
is_last (bool): Indicates if this is the last task. Defaults to False.
device (str): The device to use for execution. Defaults to "cpu".
device_id (int): The ID of the GPU to use if device is set to "gpu". Defaults to 1.
all_cores (bool): If True, uses all available CPU cores. Defaults to True.
do_not_use_cluster_ops (bool): If True, does not use cluster operations. Defaults to True.
all_gpus (bool): If True, uses all available GPUs. Defaults to False.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
Any: The result of the asynchronous operation.
Raises:
Exception: If an error occurs during the asynchronous operation.
"""
try:
return await asyncio.to_thread(
self.run,
task=task,
img=img,
is_last=is_last,
device=device,
device_id=device_id,
all_cores=all_cores,
do_not_use_cluster_ops=do_not_use_cluster_ops,
all_gpus=all_gpus,
*args,
**kwargs,
)
except Exception as error:
await self._handle_run_error(
error
) # Ensure this is also async if needed
def __call__(
self,
task: Optional[str] = None,
img: Optional[str] = None,
is_last: bool = False,
device: str = "cpu", # gpu
device_id: int = 1,
all_cores: bool = True,
do_not_use_cluster_ops: bool = True,
all_gpus: bool = False,
*args,
**kwargs,
) -> Any:
"""Call the agent
Args:
task (Optional[str]): The task to be performed. Defaults to None.
img (Optional[str]): The image to be processed. Defaults to None.
is_last (bool): Indicates if this is the last task. Defaults to False.
device (str): The device to use for execution. Defaults to "cpu".
device_id (int): The ID of the GPU to use if device is set to "gpu". Defaults to 0.
all_cores (bool): If True, uses all available CPU cores. Defaults to True.
"""
try:
return self.run(
task=task,
img=img,
is_last=is_last,
device=device,
device_id=device_id,
all_cores=all_cores,
do_not_use_cluster_ops=do_not_use_cluster_ops,
all_gpus=all_gpus * args,
**kwargs,
)
except Exception as error:
self._handle_run_error(error)
def dict_to_csv(self, data: dict) -> str:
"""
Convert a dictionary to a CSV string.
Args:
data (dict): The dictionary to convert.
Returns:
str: The CSV string representation of the dictionary.
"""
import csv
import io
output = io.StringIO()
writer = csv.writer(output)
# Write header
writer.writerow(data.keys())
# Write values
writer.writerow(data.values())
return output.getvalue()
def parse_and_execute_tools(self, response: str, *args, **kwargs):
try:
logger.info("Executing tool...")
# try to Execute the tool and return a string
out = parse_and_execute_json(
functions=self.tools,
json_string=response,
parse_md=True,
*args,
**kwargs,
)
out = str(out)
logger.info(f"Tool Output: {out}")
# Add the output to the memory
self.short_memory.add(
role="Tool Executor",
content=out,
)
except Exception as error:
logger.error(f"Error executing tool: {error}")
raise error
def add_memory(self, message: str):
"""Add a memory to the agent
Args:
message (str): _description_
Returns:
_type_: _description_
"""
logger.info(f"Adding memory: {message}")
return self.short_memory.add(
role=self.agent_name, content=message
)
def plan(self, task: str, *args, **kwargs) -> None:
"""
Plan the task
Args:
task (str): The task to plan
"""
try:
if exists(self.planning_prompt):
# Join the plan and the task
planning_prompt = f"{self.planning_prompt} {task}"
plan = self.llm(planning_prompt, *args, **kwargs)
logger.info(f"Plan: {plan}")
# Add the plan to the memory
self.short_memory.add(
role=self.agent_name, content=str(plan)
)
return None
except Exception as error:
logger.error(f"Error planning task: {error}")
raise error
async def run_concurrent(self, task: str, *args, **kwargs):
"""
Run a task concurrently.
Args:
task (str): The task to run.
"""
try:
logger.info(f"Running concurrent task: {task}")
future = self.executor.submit(
self.run, task, *args, **kwargs
)
result = await asyncio.wrap_future(future)
logger.info(f"Completed task: {result}")
return result
except Exception as error:
logger.error(
f"Error running agent: {error} while running concurrently"
)
def run_concurrent_tasks(self, tasks: List[str], *args, **kwargs):
"""
Run multiple tasks concurrently.
Args:
tasks (List[str]): A list of tasks to run.
"""
try:
logger.info(f"Running concurrent tasks: {tasks}")
futures = [
self.executor.submit(
self.run, task=task, *args, **kwargs
)
for task in tasks
]
results = [future.result() for future in futures]
logger.info(f"Completed tasks: {results}")
return results
except Exception as error:
logger.error(f"Error running concurrent tasks: {error}")
def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]:
"""
Generate responses for multiple input sets.
Args:
inputs (List[Dict[str, Any]]): A list of input dictionaries containing the necessary data for each run.
Returns:
List[str]: A list of response strings generated for each input set.
Raises:
Exception: If an error occurs while running the bulk tasks.
"""
try:
logger.info(f"Running bulk tasks: {inputs}")
return [self.run(**input_data) for input_data in inputs]
except Exception as error:
logger.info(f"Error running bulk run: {error}", "red")
async def arun_batched(
self,
tasks: List[str],
*args,
**kwargs,
):
"""Asynchronously runs a batch of tasks."""
try:
# Create a list of coroutines for each task
coroutines = [
self.arun(task=task, *args, **kwargs)
for task in tasks
]
# Use asyncio.gather to run them concurrently
results = await asyncio.gather(*coroutines)
return results
except Exception as error:
logger.error(f"Error running batched tasks: {error}")
raise
def save(self, file_path: str = None) -> None:
"""
Save the agent state to a file using SafeStateManager with atomic writing
and backup functionality. Automatically handles complex objects and class instances.
Args:
file_path (str, optional): Custom path to save the state.
If None, uses configured paths.
Raises:
OSError: If there are filesystem-related errors
Exception: For other unexpected errors
"""
try:
# Determine the save path
resolved_path = (
file_path
or self.saved_state_path
or f"{self.agent_name}_state.json"
)
# Ensure path has .json extension
if not resolved_path.endswith(".json"):
resolved_path += ".json"
# Create full path including workspace directory
full_path = os.path.join(
self.workspace_dir, resolved_path
)
backup_path = full_path + ".backup"
temp_path = full_path + ".temp"
# Ensure workspace directory exists
os.makedirs(os.path.dirname(full_path), exist_ok=True)
# First save to temporary file using SafeStateManager
SafeStateManager.save_state(self, temp_path)
# If current file exists, create backup
if os.path.exists(full_path):
try:
os.replace(full_path, backup_path)
except Exception as e:
logger.warning(f"Could not create backup: {e}")
# Move temporary file to final location
os.replace(temp_path, full_path)
# Clean up old backup if everything succeeded
if os.path.exists(backup_path):
try:
os.remove(backup_path)
except Exception as e:
logger.warning(
f"Could not remove backup file: {e}"
)
# Log saved state information if verbose
if self.verbose:
self._log_saved_state_info(full_path)
logger.info(
f"Successfully saved agent state to: {full_path}"
)
# Handle additional component saves
self._save_additional_components(full_path)
except OSError as e:
logger.error(
f"Filesystem error while saving agent state: {e}"
)
raise
except Exception as e:
logger.error(f"Unexpected error saving agent state: {e}")
raise
def _save_additional_components(self, base_path: str) -> None:
"""Save additional agent components like memory."""
try:
# Save long term memory if it exists
if (
hasattr(self, "long_term_memory")
and self.long_term_memory is not None
):
memory_path = (
f"{os.path.splitext(base_path)[0]}_memory.json"
)
try:
self.long_term_memory.save(memory_path)
logger.info(
f"Saved long-term memory to: {memory_path}"
)
except Exception as e:
logger.warning(
f"Could not save long-term memory: {e}"
)
# Save memory manager if it exists
if (
hasattr(self, "memory_manager")
and self.memory_manager is not None
):
manager_path = f"{os.path.splitext(base_path)[0]}_memory_manager.json"
try:
self.memory_manager.save_memory_snapshot(
manager_path
)
logger.info(
f"Saved memory manager state to: {manager_path}"
)
except Exception as e:
logger.warning(
f"Could not save memory manager: {e}"
)
except Exception as e:
logger.warning(f"Error saving additional components: {e}")
def enable_autosave(self, interval: int = 300) -> None:
"""
Enable automatic saving of agent state using SafeStateManager at specified intervals.
Args:
interval (int): Time between saves in seconds. Defaults to 300 (5 minutes).
"""
def autosave_loop():
while self.autosave:
try:
self.save()
if self.verbose:
logger.debug(
f"Autosaved agent state (interval: {interval}s)"
)
except Exception as e:
logger.error(f"Autosave failed: {e}")
time.sleep(interval)
self.autosave = True
self.autosave_thread = threading.Thread(
target=autosave_loop,
daemon=True,
name=f"{self.agent_name}_autosave",
)
self.autosave_thread.start()
logger.info(f"Enabled autosave with {interval}s interval")
def disable_autosave(self) -> None:
"""Disable automatic saving of agent state."""
if hasattr(self, "autosave"):
self.autosave = False
if hasattr(self, "autosave_thread"):
self.autosave_thread.join(timeout=1)
delattr(self, "autosave_thread")
logger.info("Disabled autosave")
def cleanup(self) -> None:
"""Cleanup method to be called on exit. Ensures final state is saved."""
try:
if getattr(self, "autosave", False):
logger.info(
"Performing final autosave before exit..."
)
self.disable_autosave()
self.save()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
def load(self, file_path: str = None) -> None:
"""
Load agent state from a file using SafeStateManager.
Automatically preserves class instances and complex objects.
Args:
file_path (str, optional): Path to load state from.
If None, uses default path from agent config.
Raises:
FileNotFoundError: If state file doesn't exist
Exception: If there's an error during loading
"""
try:
# Resolve load path conditionally with a check for self.load_state_path
resolved_path = (
file_path
or self.load_state_path
or (
f"{self.saved_state_path}.json"
if self.saved_state_path
else (
f"{self.agent_name}.json"
if self.agent_name
else (
f"{self.workspace_dir}/{self.agent_name}_state.json"
if self.workspace_dir and self.agent_name
else None
)
)
)
)
# Load state using SafeStateManager
SafeStateManager.load_state(self, resolved_path)
# Reinitialize any necessary runtime components
self._reinitialize_after_load()
if self.verbose:
self._log_loaded_state_info(resolved_path)
except FileNotFoundError:
logger.error(f"State file not found: {resolved_path}")
raise
except Exception as e:
logger.error(f"Error loading agent state: {e}")
raise
def _reinitialize_after_load(self) -> None:
"""
Reinitialize necessary components after loading state.
Called automatically after load() to ensure all components are properly set up.
"""
try:
# Reinitialize conversation if needed
if (
not hasattr(self, "short_memory")
or self.short_memory is None
):
self.short_memory = Conversation(
system_prompt=self.system_prompt,
time_enabled=True,
user=self.user_name,
rules=self.rules,
)
# Reinitialize executor if needed
if not hasattr(self, "executor") or self.executor is None:
self.executor = ThreadPoolExecutor(
max_workers=os.cpu_count()
)
# # Reinitialize tool structure if needed
# if hasattr(self, 'tools') and (self.tools or getattr(self, 'list_base_models', None)):
# self.tool_struct = BaseTool(
# tools=self.tools,
# base_models=getattr(self, 'list_base_models', None),
# tool_system_prompt=self.tool_system_prompt
# )
except Exception as e:
logger.error(f"Error reinitializing components: {e}")
raise
def _log_saved_state_info(self, file_path: str) -> None:
"""Log information about saved state for debugging"""
try:
state_dict = SafeLoaderUtils.create_state_dict(self)
preserved = SafeLoaderUtils.preserve_instances(self)
logger.info(f"Saved agent state to: {file_path}")
logger.debug(
f"Saved {len(state_dict)} configuration values"
)
logger.debug(
f"Preserved {len(preserved)} class instances"
)
if self.verbose:
logger.debug("Preserved instances:")
for name, instance in preserved.items():
logger.debug(
f" - {name}: {type(instance).__name__}"
)
except Exception as e:
logger.error(f"Error logging state info: {e}")
def _log_loaded_state_info(self, file_path: str) -> None:
"""Log information about loaded state for debugging"""
try:
state_dict = SafeLoaderUtils.create_state_dict(self)
preserved = SafeLoaderUtils.preserve_instances(self)
logger.info(f"Loaded agent state from: {file_path}")
logger.debug(
f"Loaded {len(state_dict)} configuration values"
)
logger.debug(
f"Preserved {len(preserved)} class instances"
)
if self.verbose:
logger.debug("Current class instances:")
for name, instance in preserved.items():
logger.debug(
f" - {name}: {type(instance).__name__}"
)
except Exception as e:
logger.error(f"Error logging state info: {e}")
def get_saveable_state(self) -> Dict[str, Any]:
"""
Get a dictionary of all saveable state values.
Useful for debugging or manual state inspection.
Returns:
Dict[str, Any]: Dictionary of saveable values
"""
return SafeLoaderUtils.create_state_dict(self)
def get_preserved_instances(self) -> Dict[str, Any]:
"""
Get a dictionary of all preserved class instances.
Useful for debugging or manual state inspection.
Returns:
Dict[str, Any]: Dictionary of preserved instances
"""
return SafeLoaderUtils.preserve_instances(self)
def graceful_shutdown(self):
"""Gracefully shutdown the system saving the state"""
logger.info("Shutting down the system...")
return self.save()
def analyze_feedback(self):
"""Analyze the feedback for issues"""
feedback_counts = {}
for feedback in self.feedback:
if feedback in feedback_counts:
feedback_counts[feedback] += 1
else:
feedback_counts[feedback] = 1
print(f"Feedback counts: {feedback_counts}")
def undo_last(self) -> Tuple[str, str]:
"""
Response the last response and return the previous state
Example:
# Feature 2: Undo functionality
response = agent.run("Another task")
print(f"Response: {response}")
previous_state, message = agent.undo_last()
print(message)
"""
if len(self.short_memory) < 2:
return None, None
# Remove the last response but keep the last state, short_memory is a dict
self.short_memory.delete(-1)
# Get the previous state
previous_state = self.short_memory[-1]
return previous_state, f"Restored to {previous_state}"
# Response Filtering
def add_response_filter(self, filter_word: str) -> None:
"""
Add a response filter to filter out certain words from the response
Example:
agent.add_response_filter("Trump")
agent.run("Generate a report on Trump")
"""
logger.info(f"Adding response filter: {filter_word}")
self.reponse_filters.append(filter_word)
def apply_reponse_filters(self, response: str) -> str:
"""
Apply the response filters to the response
"""
logger.info(
f"Applying response filters to response: {response}"
)
for word in self.response_filters:
response = response.replace(word, "[FILTERED]")
return response
def filtered_run(self, task: str) -> str:
"""
# Feature 3: Response filtering
agent.add_response_filter("report")
response = agent.filtered_run("Generate a report on finance")
print(response)
"""
logger.info(f"Running filtered task: {task}")
raw_response = self.run(task)
return self.apply_response_filters(raw_response)
def save_to_yaml(self, file_path: str) -> None:
"""
Save the agent to a YAML file
Args:
file_path (str): The path to the YAML file
"""
try:
logger.info(f"Saving agent to YAML file: {file_path}")
with open(file_path, "w") as f:
yaml.dump(self.to_dict(), f)
except Exception as error:
logger.error(f"Error saving agent to YAML: {error}")
raise error
def get_llm_parameters(self):
return str(vars(self.llm))
def update_system_prompt(self, system_prompt: str):
"""Upddate the system message"""
self.system_prompt = system_prompt
def update_max_loops(self, max_loops: int):
"""Update the max loops"""
self.max_loops = max_loops
def update_loop_interval(self, loop_interval: int):
"""Update the loop interval"""
self.loop_interval = loop_interval
def update_retry_attempts(self, retry_attempts: int):
"""Update the retry attempts"""
self.retry_attempts = retry_attempts
def update_retry_interval(self, retry_interval: int):
"""Update the retry interval"""
self.retry_interval = retry_interval
def reset(self):
"""Reset the agent"""
self.short_memory = None
def ingest_docs(self, docs: List[str], *args, **kwargs):
"""Ingest the docs into the memory
Args:
docs (List[str]): Documents of pdfs, text, csvs
Returns:
None
"""
try:
for doc in docs:
data = data_to_text(doc)
return self.short_memory.add(
role=self.user_name, content=data
)
except Exception as error:
logger.info(f"Error ingesting docs: {error}", "red")
def ingest_pdf(self, pdf: str):
"""Ingest the pdf into the memory
Args:
pdf (str): file path of pdf
"""
try:
logger.info(f"Ingesting pdf: {pdf}")
text = pdf_to_text(pdf)
return self.short_memory.add(
role=self.user_name, content=text
)
except Exception as error:
logger.info(f"Error ingesting pdf: {error}", "red")
def receieve_message(self, name: str, message: str):
"""Receieve a message"""
try:
message = f"{name}: {message}"
return self.short_memory.add(role=name, content=message)
except Exception as error:
logger.info(f"Error receiving message: {error}")
raise error
def send_agent_message(
self, agent_name: str, message: str, *args, **kwargs
):
"""Send a message to the agent"""
try:
logger.info(f"Sending agent message: {message}")
message = f"{agent_name}: {message}"
return self.run(message, *args, **kwargs)
except Exception as error:
logger.info(f"Error sending agent message: {error}")
raise error
def add_tool(self, tool: Callable):
"""Add a single tool to the agent's tools list.
Args:
tool (Callable): The tool function to add
Returns:
The result of appending the tool to the tools list
"""
logger.info(f"Adding tool: {tool.__name__}")
return self.tools.append(tool)
def add_tools(self, tools: List[Callable]):
"""Add multiple tools to the agent's tools list.
Args:
tools (List[Callable]): List of tool functions to add
Returns:
The result of extending the tools list
"""
logger.info(f"Adding tools: {[t.__name__ for t in tools]}")
return self.tools.extend(tools)
def remove_tool(self, tool: Callable):
"""Remove a single tool from the agent's tools list.
Args:
tool (Callable): The tool function to remove
Returns:
The result of removing the tool from the tools list
"""
logger.info(f"Removing tool: {tool.__name__}")
return self.tools.remove(tool)
def remove_tools(self, tools: List[Callable]):
"""Remove multiple tools from the agent's tools list.
Args:
tools (List[Callable]): List of tool functions to remove
"""
logger.info(f"Removing tools: {[t.__name__ for t in tools]}")
for tool in tools:
self.tools.remove(tool)
def get_docs_from_doc_folders(self):
"""Get the docs from the files"""
try:
logger.info("Getting docs from doc folders")
# Get the list of files then extract them and add them to the memory
files = os.listdir(self.docs_folder)
# Extract the text from the files
# Process each file and combine their contents
all_text = ""
for file in files:
file_path = os.path.join(self.docs_folder, file)
text = data_to_text(file_path)
all_text += f"\nContent from {file}:\n{text}\n"
# Add the combined content to memory
return self.short_memory.add(
role=self.user_name, content=all_text
)
except Exception as error:
logger.error(
f"Error getting docs from doc folders: {error}"
)
raise error
def check_end_session_agentops(self):
if self.agent_ops_on is True:
try:
from swarms.utils.agent_ops_check import (
end_session_agentops,
)
# Try ending the session
return end_session_agentops()
except ImportError:
logger.error(
"Could not import agentops, try installing agentops: $ pip3 install agentops"
)
def memory_query(self, task: str = None, *args, **kwargs) -> None:
try:
# Query the long term memory
if self.long_term_memory is not None:
formatter.print_panel(f"Querying RAG for: {task}")
memory_retrieval = self.long_term_memory.query(
task, *args, **kwargs
)
memory_retrieval = (
f"Documents Available: {str(memory_retrieval)}"
)
# # Count the tokens
# memory_token_count = self.tokenizer.count_tokens(
# memory_retrieval
# )
# if memory_token_count > self.memory_chunk_size:
# # Truncate the memory by the memory chunk size
# memory_retrieval = self.truncate_string_by_tokens(
# memory_retrieval, self.memory_chunk_size
# )
self.short_memory.add(
role="Database",
content=memory_retrieval,
)
return None
except Exception as e:
logger.error(f"An error occurred: {e}")
raise e
def sentiment_analysis_handler(self, response: str = None):
"""
Performs sentiment analysis on the given response and stores the result in the short-term memory.
Args:
response (str): The response to analyze sentiment for.
Returns:
None
"""
try:
# Sentiment analysis
if self.sentiment_analyzer:
sentiment = self.sentiment_analyzer(response)
print(f"Sentiment: {sentiment}")
if sentiment > self.sentiment_threshold:
print(
f"Sentiment: {sentiment} is above"
" threshold:"
f" {self.sentiment_threshold}"
)
elif sentiment < self.sentiment_threshold:
print(
f"Sentiment: {sentiment} is below"
" threshold:"
f" {self.sentiment_threshold}"
)
self.short_memory.add(
role=self.agent_name,
content=sentiment,
)
except Exception as e:
print(f"Error occurred during sentiment analysis: {e}")
def stream_response(
self, response: str, delay: float = 0.001
) -> None:
"""
Streams the response token by token.
Args:
response (str): The response text to be streamed.
delay (float, optional): Delay in seconds between printing each token. Default is 0.1 seconds.
Raises:
ValueError: If the response is not provided.
Exception: For any errors encountered during the streaming process.
Example:
response = "This is a sample response from the API."
stream_response(response)
"""
# Check for required inputs
if not response:
raise ValueError("Response is required.")
try:
# Stream and print the response token by token
for token in response.split():
print(token, end=" ", flush=True)
time.sleep(delay)
print() # Ensure a newline after streaming
except Exception as e:
print(f"An error occurred during streaming: {e}")
def check_available_tokens(self):
# Log the amount of tokens left in the memory and in the task
if self.tokenizer is not None:
tokens_used = self.tokenizer.count_tokens(
self.short_memory.return_history_as_string()
)
logger.info(
f"Tokens available: {self.context_length - tokens_used}"
)
return tokens_used
def tokens_checks(self):
# Check the tokens available
tokens_used = self.tokenizer.count_tokens(
self.short_memory.return_history_as_string()
)
out = self.check_available_tokens()
logger.info(
f"Tokens available: {out} Context Length: {self.context_length} Tokens in memory: {tokens_used}"
)
return out
def parse_function_call_and_execute(self, response: str):
"""
Parses a function call from the given response and executes it.
Args:
response (str): The response containing the function call.
Returns:
None
Raises:
Exception: If there is an error parsing and executing the function call.
"""
try:
if self.tools is not None:
tool_call_output = parse_and_execute_json(
self.tools, response, parse_md=True
)
if tool_call_output is not str:
tool_call_output = str(tool_call_output)
logger.info(f"Tool Call Output: {tool_call_output}")
self.short_memory.add(
role=self.agent_name,
content=tool_call_output,
)
return tool_call_output
except Exception as error:
logger.error(
f"Error parsing and executing function call: {error}"
)
# Raise a custom exception with the error message
raise Exception(
"Error parsing and executing function call"
) from error
def activate_agentops(self):
if self.agent_ops_on is True:
try:
from swarms.utils.agent_ops_check import (
try_import_agentops,
)
# Try importing agent ops
logger.info(
"Agent Ops Initializing, ensure that you have the agentops API key and the pip package installed."
)
try_import_agentops()
self.agent_ops_agent_name = self.agent_name
logger.info("Agentops successfully activated!")
except ImportError:
logger.error(
"Could not import agentops, try installing agentops: $ pip3 install agentops"
)
def llm_output_parser(self, response: Any) -> str:
"""Parse the output from the LLM"""
try:
if isinstance(response, dict):
if "choices" in response:
return response["choices"][0]["message"][
"content"
]
else:
return json.dumps(
response
) # Convert dict to string
elif isinstance(response, str):
return response
else:
return str(
response
) # Convert any other type to string
except Exception as e:
logger.error(f"Error parsing LLM output: {e}")
return str(
response
) # Return string representation as fallback
def log_step_metadata(
self, loop: int, task: str, response: str
) -> Step:
"""Log metadata for each step of agent execution."""
# Generate unique step ID
step_id = f"step_{loop}_{uuid.uuid4().hex}"
# Calculate token usage
# full_memory = self.short_memory.return_history_as_string()
# prompt_tokens = self.tokenizer.count_tokens(full_memory)
# completion_tokens = self.tokenizer.count_tokens(response)
# total_tokens = prompt_tokens + completion_tokens
total_tokens = (
self.tokenizer.count_tokens(task)
+ self.tokenizer.count_tokens(response),
)
# # Get memory responses
# memory_responses = {
# "short_term": (
# self.short_memory.return_history_as_string()
# if self.short_memory
# else None
# ),
# "long_term": (
# self.long_term_memory.query(task)
# if self.long_term_memory
# else None
# ),
# }
# # Get tool responses if tool was used
# if self.tools:
# try:
# tool_call_output = parse_and_execute_json(
# self.tools, response, parse_md=True
# )
# if tool_call_output:
# {
# "tool_name": tool_call_output.get(
# "tool_name", "unknown"
# ),
# "tool_args": tool_call_output.get("args", {}),
# "tool_output": str(
# tool_call_output.get("output", "")
# ),
# }
# except Exception as e:
# logger.debug(
# f"No tool call detected in response: {e}"
# )
# Create memory usage tracking
# memory_usage = {
# "short_term": (
# len(self.short_memory.messages)
# if self.short_memory
# else 0
# ),
# "long_term": (
# self.long_term_memory.count
# if self.long_term_memory
# else 0
# ),
# "responses": memory_responses,
# }
step_log = Step(
step_id=step_id,
time=time.time(),
tokens=total_tokens,
response=AgentChatCompletionResponse(
id=self.agent_id,
agent_name=self.agent_name,
object="chat.completion",
choices=ChatCompletionResponseChoice(
index=loop,
input=task,
message=ChatMessageResponse(
role=self.agent_name,
content=response,
),
),
# usage=UsageInfo(
# prompt_tokens=prompt_tokens,
# completion_tokens=completion_tokens,
# total_tokens=total_tokens,
# ),
# tool_calls=(
# [] if tool_response is None else [tool_response]
# ),
# memory_usage=None,
),
)
# Update total tokens if agent_output exists
# if hasattr(self, "agent_output"):
# self.agent_output.total_tokens += (
# self.response.total_tokens
# )
# Add step to agent output tracking
self.step_pool.append(step_log)
def update_tool_usage(
self,
step_id: str,
tool_name: str,
tool_args: dict,
tool_response: Any,
):
"""Update tool usage information for a specific step."""
for step in self.agent_output.steps:
if step.step_id == step_id:
step.response.tool_calls.append(
{
"tool": tool_name,
"arguments": tool_args,
"response": str(tool_response),
}
)
break
def _serialize_callable(
self, attr_value: Callable
) -> Dict[str, Any]:
"""
Serializes callable attributes by extracting their name and docstring.
Args:
attr_value (Callable): The callable to serialize.
Returns:
Dict[str, Any]: Dictionary with name and docstring of the callable.
"""
return {
"name": getattr(
attr_value, "__name__", type(attr_value).__name__
),
"doc": getattr(attr_value, "__doc__", None),
}
def _serialize_attr(self, attr_name: str, attr_value: Any) -> Any:
"""
Serializes an individual attribute, handling non-serializable objects.
Args:
attr_name (str): The name of the attribute.
attr_value (Any): The value of the attribute.
Returns:
Any: The serialized value of the attribute.
"""
try:
if callable(attr_value):
return self._serialize_callable(attr_value)
elif hasattr(attr_value, "to_dict"):
return (
attr_value.to_dict()
) # Recursive serialization for nested objects
else:
json.dumps(
attr_value
) # Attempt to serialize to catch non-serializable objects
return attr_value
except (TypeError, ValueError):
return f"<Non-serializable: {type(attr_value).__name__}>"
def to_dict(self) -> Dict[str, Any]:
"""
Converts all attributes of the class, including callables, into a dictionary.
Handles non-serializable attributes by converting them or skipping them.
Returns:
Dict[str, Any]: A dictionary representation of the class attributes.
"""
return {
attr_name: self._serialize_attr(attr_name, attr_value)
for attr_name, attr_value in self.__dict__.items()
}
def to_json(self, indent: int = 4, *args, **kwargs):
return json.dumps(
self.to_dict(), indent=indent, *args, **kwargs
)
def to_yaml(self, indent: int = 4, *args, **kwargs):
return yaml.dump(
self.to_dict(), indent=indent, *args, **kwargs
)
def to_toml(self, *args, **kwargs):
return toml.dumps(self.to_dict(), *args, **kwargs)
def model_dump_json(self):
logger.info(
f"Saving {self.agent_name} model to JSON in the {self.workspace_dir} directory"
)
create_file_in_folder(
self.workspace_dir,
f"{self.agent_name}.json",
str(self.to_json()),
)
return f"Model saved to {self.workspace_dir}/{self.agent_name}.json"
def model_dump_yaml(self):
logger.info(
f"Saving {self.agent_name} model to YAML in the {self.workspace_dir} directory"
)
create_file_in_folder(
self.workspace_dir,
f"{self.agent_name}.yaml",
str(self.to_yaml()),
)
return f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml"
def log_agent_data(self):
import requests
data_dict = {"data": self.to_dict()}
url = "https://swarms.world/api/get-agents/log-agents"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer sk-f24a13ed139f757d99cdd9cdcae710fccead92681606a97086d9711f69d44869",
}
response = requests.post(url, json=data_dict, headers=headers)
return response.json()
def handle_tool_schema_ops(self):
if exists(self.tool_schema):
logger.info(f"Tool schema provided: {self.tool_schema}")
output = self.tool_struct.base_model_to_dict(
self.tool_schema, output_str=True
)
# Add the tool schema to the short memory
self.short_memory.add(
role=self.agent_name, content=output
)
# If multiple base models, then conver them.
if exists(self.list_base_models):
logger.info(
"Multiple base models provided, Automatically converting to OpenAI function"
)
schemas = self.tool_struct.multi_base_models_to_dict(
output_str=True
)
# If the output is a string then add it to the memory
self.short_memory.add(
role=self.agent_name, content=schemas
)
return None
def call_llm(self, task: str, *args, **kwargs) -> str:
"""
Calls the appropriate method on the `llm` object based on the given task.
Args:
task (str): The task to be performed by the `llm` object.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
str: The result of the method call on the `llm` object.
Raises:
AttributeError: If no suitable method is found in the llm object.
TypeError: If task is not a string or llm object is None.
ValueError: If task is empty.
"""
if not isinstance(task, str):
raise TypeError("Task must be a string")
if not task.strip():
raise ValueError("Task cannot be empty")
if self.llm is None:
raise TypeError("LLM object cannot be None")
try:
out = self.llm.run(task, *args, **kwargs)
return out
except AttributeError as e:
logger.error(
f"Error calling LLM: {e} You need a class with a run(task: str) method"
)
raise e
def handle_sop_ops(self):
# If the user inputs a list of strings for the sop then join them and set the sop
if exists(self.sop_list):
self.sop = "\n".join(self.sop_list)
self.short_memory.add(
role=self.user_name, content=self.sop
)
if exists(self.sop):
self.short_memory.add(
role=self.user_name, content=self.sop
)
logger.info("SOP Uploaded into the memory")
def run(
self,
task: Optional[str] = None,
img: Optional[str] = None,
device: Optional[str] = "cpu", # gpu
device_id: Optional[int] = 0,
all_cores: Optional[bool] = True,
scheduled_run_date: Optional[datetime] = None,
do_not_use_cluster_ops: Optional[bool] = True,
all_gpus: Optional[bool] = False,
*args,
**kwargs,
) -> Any:
"""
Executes the agent's run method on a specified device, with optional scheduling.
This method attempts to execute the agent's run method on a specified device, either CPU or GPU. It logs the device selection and the number of cores or GPU ID used. If the device is set to CPU, it can use all available cores or a specific core specified by `device_id`. If the device is set to GPU, it uses the GPU specified by `device_id`.
If a `scheduled_date` is provided, the method will wait until that date and time before executing the task.
Args:
task (Optional[str], optional): The task to be executed. Defaults to None.
img (Optional[str], optional): The image to be processed. Defaults to None.
device (str, optional): The device to use for execution. Defaults to "cpu".
device_id (int, optional): The ID of the GPU to use if device is set to "gpu". Defaults to 0.
all_cores (bool, optional): If True, uses all available CPU cores. Defaults to True.
scheduled_run_date (Optional[datetime], optional): The date and time to schedule the task. Defaults to None.
do_not_use_cluster_ops (bool, optional): If True, does not use cluster ops. Defaults to False.
*args: Additional positional arguments to be passed to the execution method.
**kwargs: Additional keyword arguments to be passed to the execution method.
Returns:
Any: The result of the execution.
Raises:
ValueError: If an invalid device is specified.
Exception: If any other error occurs during execution.
"""
device = device or self.device
device_id = device_id or self.device_id
all_cores = all_cores or self.all_cores
all_gpus = all_gpus or self.all_gpus
do_not_use_cluster_ops = (
do_not_use_cluster_ops or self.do_not_use_cluster_ops
)
if scheduled_run_date:
while datetime.now() < scheduled_run_date:
time.sleep(
1
) # Sleep for a short period to avoid busy waiting
try:
# If cluster ops disabled, run directly
if do_not_use_cluster_ops is True:
logger.info("Running without cluster operations")
return self._run(
task=task,
img=img,
*args,
**kwargs,
)
else:
return exec_callable_with_clusterops(
device=device,
device_id=device_id,
all_cores=all_cores,
all_gpus=all_gpus,
func=self._run,
task=task,
img=img,
*args,
**kwargs,
)
except ValueError as e:
self._handle_run_error(e)
except Exception as e:
self._handle_run_error(e)
def handle_artifacts(
self, text: str, file_output_path: str, file_extension: str
) -> None:
"""Handle creating and saving artifacts with error handling."""
try:
# Ensure file_extension starts with a dot
if not file_extension.startswith("."):
file_extension = "." + file_extension
# If file_output_path doesn't have an extension, treat it as a directory
# and create a default filename based on timestamp
if not os.path.splitext(file_output_path)[1]:
timestamp = time.strftime("%Y%m%d_%H%M%S")
filename = f"artifact_{timestamp}{file_extension}"
full_path = os.path.join(file_output_path, filename)
else:
full_path = file_output_path
# Create the directory if it doesn't exist
os.makedirs(os.path.dirname(full_path), exist_ok=True)
logger.info(f"Creating artifact for file: {full_path}")
artifact = Artifact(
file_path=full_path,
file_type=file_extension,
contents=text,
edit_count=0,
)
logger.info(
f"Saving artifact with extension: {file_extension}"
)
artifact.save_as(file_extension)
logger.success(
f"Successfully saved artifact to {full_path}"
)
except ValueError as e:
logger.error(
f"Invalid input values for artifact: {str(e)}"
)
raise
except IOError as e:
logger.error(f"Error saving artifact to file: {str(e)}")
raise
except Exception as e:
logger.error(
f"Unexpected error handling artifact: {str(e)}"
)
raise
def showcase_config(self):
# Convert all values in config_dict to concise string representations
config_dict = self.to_dict()
for key, value in config_dict.items():
if isinstance(value, list):
# Format list as a comma-separated string
config_dict[key] = ", ".join(
str(item) for item in value
)
elif isinstance(value, dict):
# Format dict as key-value pairs in a single string
config_dict[key] = ", ".join(
f"{k}: {v}" for k, v in value.items()
)
else:
# Ensure any non-iterable value is a string
config_dict[key] = str(value)
return formatter.print_table(
f"Agent: {self.agent_name} Configuration", config_dict
)
|