vllm-test-ui / app.py
harsh-manvar's picture
Upload 3 files
0efa81e verified
raw
history blame
2.27 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from vllm import LLMEngine, SamplingParams
# Load the model and tokenizer from Hugging Face
model_name = "Qwen/Qwen2-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
engine = LLMEngine(model=model_name)
def generate_response(prompt, max_tokens, temperature, top_p):
# Tokenize the prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Define sampling parameters
sampling_params = SamplingParams(
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Generate text using vLLM
output = engine.generate(inputs["input_ids"], sampling_params)
# Decode the generated tokens to text
generated_text = tokenizer.decode(output[0]["token_ids"], skip_special_tokens=True)
return generated_text
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# πŸš€ Hugging Face Integration with vLLM")
gr.Markdown("Generate text using the vLLM integration with Hugging Face models.")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=3,
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=10,
maximum=500,
value=100,
step=10,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
)
top_p = gr.Slider(
label="Top P",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
)
submit_button = gr.Button("Generate")
with gr.Column():
output_text = gr.Textbox(
label="Generated Text",
lines=10,
interactive=False,
)
submit_button.click(
generate_response,
inputs=[prompt_input, max_tokens, temperature, top_p],
outputs=output_text,
)
# Launch the app
demo.launch()