Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,497 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import os
|
3 |
-
# from mistralai.client import MistralClient
|
4 |
-
# from mistralai.models.chat_completion import ChatMessage
|
5 |
-
|
6 |
-
# # Ensure the environment variable for the API key is set
|
7 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
8 |
-
# if not api_key:
|
9 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
10 |
-
|
11 |
-
# model = "mistral-tiny"
|
12 |
-
# client = MistralClient(api_key=api_key)
|
13 |
-
|
14 |
-
# def generate_goals(input_var):
|
15 |
-
# messages = [
|
16 |
-
# ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques")
|
17 |
-
# ]
|
18 |
-
|
19 |
-
# try:
|
20 |
-
# response = client.chat(model=model, messages=messages)
|
21 |
-
# content = response.choices[0].message.content
|
22 |
-
# return content
|
23 |
-
# except Exception as e:
|
24 |
-
# return f"An error occurred: {str(e)}"
|
25 |
-
|
26 |
-
# # HTML content
|
27 |
-
# html_content = """
|
28 |
-
# <!DOCTYPE html>
|
29 |
-
# <html lang="en">
|
30 |
-
# <head>
|
31 |
-
# <meta charset="UTF-8">
|
32 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
33 |
-
# <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
|
34 |
-
# <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
|
35 |
-
# <style>
|
36 |
-
# body { font-family: Arial, sans-serif; margin: 20px; }
|
37 |
-
# #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; }
|
38 |
-
# .goal { cursor: pointer; }
|
39 |
-
# #info { margin-top: 20px; font-weight: bold; }
|
40 |
-
# #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
|
41 |
-
# #hoverInfo {
|
42 |
-
# position: absolute;
|
43 |
-
# padding: 10px;
|
44 |
-
# background-color: rgba(255, 255, 255, 0.9);
|
45 |
-
# border: 1px solid #ccc;
|
46 |
-
# border-radius: 5px;
|
47 |
-
# font-size: 14px;
|
48 |
-
# max-width: 300px;
|
49 |
-
# display: none;
|
50 |
-
# }
|
51 |
-
# #responseBox {
|
52 |
-
# margin-top: 20px;
|
53 |
-
# padding: 10px;
|
54 |
-
# border: 1px solid #ccc;
|
55 |
-
# background-color: #e0f7fa;
|
56 |
-
# }
|
57 |
-
# </style>
|
58 |
-
# </head>
|
59 |
-
# <body>
|
60 |
-
# <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
|
61 |
-
# <div id="goalSpace"></div>
|
62 |
-
# <div id="info"></div>
|
63 |
-
# <div id="selectedGoal"></div>
|
64 |
-
# <div id="hoverInfo"></div>
|
65 |
-
# <div id="responseBox"></div>
|
66 |
-
|
67 |
-
# <script>
|
68 |
-
# const width = 1200;
|
69 |
-
# const height = 800;
|
70 |
-
# // Define the goals and connections data
|
71 |
-
# const goals = [
|
72 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
73 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
74 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
75 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
76 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
77 |
-
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
78 |
-
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
79 |
-
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
80 |
-
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
81 |
-
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
82 |
-
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
83 |
-
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
84 |
-
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
85 |
-
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
86 |
-
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
87 |
-
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
88 |
-
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
89 |
-
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
90 |
-
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
91 |
-
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
92 |
-
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
93 |
-
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
94 |
-
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
95 |
-
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
96 |
-
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
97 |
-
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
98 |
-
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
99 |
-
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
100 |
-
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
101 |
-
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
102 |
-
# ];
|
103 |
-
# const connections = [
|
104 |
-
# { source: 1, target: 2 },
|
105 |
-
# { source: 2, target: 3 },
|
106 |
-
# { source: 3, target: 4 },
|
107 |
-
# { source: 4, target: 5 },
|
108 |
-
# { source: 5, target: 7 },
|
109 |
-
# { source: 6, target: 7 },
|
110 |
-
# { source: 7, target: 8 },
|
111 |
-
# { source: 8, target: 9 },
|
112 |
-
# { source: 9, target: 16 },
|
113 |
-
# { source: 10, target: 13 },
|
114 |
-
# { source: 11, target: 12 },
|
115 |
-
# { source: 12, target: 20 },
|
116 |
-
# { source: 13, target: 16 },
|
117 |
-
# { source: 14, target: 21 },
|
118 |
-
# { source: 15, target: 17 },
|
119 |
-
# { source: 16, target: 18 },
|
120 |
-
# { source: 17, target: 19 },
|
121 |
-
# { source: 18, target: 22 },
|
122 |
-
# { source: 19, target: 21 },
|
123 |
-
# { source: 20, target: 29 },
|
124 |
-
# { source: 21, target: 30 },
|
125 |
-
# { source: 22, target: 23 },
|
126 |
-
# { source: 23, target: 25 },
|
127 |
-
# { source: 24, target: 12 },
|
128 |
-
# { source: 25, target: 23 },
|
129 |
-
# { source: 26, target: 15 },
|
130 |
-
# { source: 27, target: 15 },
|
131 |
-
# { source: 28, target: 22 },
|
132 |
-
# { source: 29, target: 23 },
|
133 |
-
# { source: 30, target: 21 },
|
134 |
-
# // Additional connections for more interconnectivity
|
135 |
-
# { source: 1, target: 10 },
|
136 |
-
# { source: 2, target: 6 },
|
137 |
-
# { source: 3, target: 13 },
|
138 |
-
# { source: 4, target: 15 },
|
139 |
-
# { source: 5, target: 28 },
|
140 |
-
# { source: 8, target: 23 },
|
141 |
-
# { source: 11, target: 25 },
|
142 |
-
# { source: 14, target: 30 },
|
143 |
-
# { source: 24, target: 17 },
|
144 |
-
# { source: 26, target: 29 }
|
145 |
-
# ];
|
146 |
-
|
147 |
-
|
148 |
-
# // Create the SVG container for the goals and connections
|
149 |
-
# const svg = d3.select("#goalSpace")
|
150 |
-
# .append("svg")
|
151 |
-
# .attr("width", width)
|
152 |
-
# .attr("height", height);
|
153 |
-
|
154 |
-
# // Draw connections between goals
|
155 |
-
# const links = svg.selectAll("line")
|
156 |
-
# .data(connections)
|
157 |
-
# .enter()
|
158 |
-
# .append("line")
|
159 |
-
# .attr("x1", d => goals.find(g => g.id === d.source).x)
|
160 |
-
# .attr("y1", d => goals.find(g => g.id === d.source).y)
|
161 |
-
# .attr("x2", d => goals.find(g => g.id === d.target).x)
|
162 |
-
# .attr("y2", d => goals.find(g => g.id === d.target).y)
|
163 |
-
# .attr("stroke", "#999")
|
164 |
-
# .attr("stroke-width", 1)
|
165 |
-
# .attr("stroke-opacity", 0.6);
|
166 |
-
|
167 |
-
# // Draw goal nodes
|
168 |
-
# const goalNodes = svg.selectAll("circle")
|
169 |
-
# .data(goals)
|
170 |
-
# .enter()
|
171 |
-
# .append("circle")
|
172 |
-
# .attr("cx", d => d.x)
|
173 |
-
# .attr("cy", d => d.y)
|
174 |
-
# .attr("r", 10)
|
175 |
-
# .attr("fill", d => {
|
176 |
-
# if (d.id <= 10) return "blue";
|
177 |
-
# if (d.id <= 20) return "green";
|
178 |
-
# return "orange";
|
179 |
-
# })
|
180 |
-
# .attr("class", "goal");
|
181 |
-
|
182 |
-
# // Add labels to the goals
|
183 |
-
# const goalLabels = svg.selectAll("text")
|
184 |
-
# .data(goals)
|
185 |
-
# .enter()
|
186 |
-
# .append("text")
|
187 |
-
# .attr("x", d => d.x + 15)
|
188 |
-
# .attr("y", d => d.y)
|
189 |
-
# .text(d => d.name)
|
190 |
-
# .attr("font-size", "12px");
|
191 |
-
|
192 |
-
# // Hover info box
|
193 |
-
# const hoverInfo = d3.select("#hoverInfo");
|
194 |
-
|
195 |
-
# // Add hover effects on goal nodes
|
196 |
-
# goalNodes.on("mouseover", function(event, d) {
|
197 |
-
# d3.select(this).attr("r", 15);
|
198 |
-
# hoverInfo.style("display", "block")
|
199 |
-
# .style("left", (event.pageX + 10) + "px")
|
200 |
-
# .style("top", (event.pageY - 10) + "px")
|
201 |
-
# .html(`<strong>${d.name}</strong><br>${d.description}`);
|
202 |
-
# }).on("mouseout", function() {
|
203 |
-
# d3.select(this).attr("r", 10);
|
204 |
-
# hoverInfo.style("display", "none");
|
205 |
-
# });
|
206 |
-
|
207 |
-
# // Handle click event on goal nodes
|
208 |
-
# goalNodes.on("click", async function(event, d) {
|
209 |
-
# updateSelectedGoalInfo(d);
|
210 |
-
|
211 |
-
# try {
|
212 |
-
# const response = await fetch('generate_goals', {
|
213 |
-
# method: 'POST',
|
214 |
-
# headers: {
|
215 |
-
# 'Content-Type': 'application/json',
|
216 |
-
# },
|
217 |
-
# body: JSON.stringify({ input_var: d.name })
|
218 |
-
# });
|
219 |
-
|
220 |
-
# if (!response.ok) {
|
221 |
-
# throw new Error(`HTTP error! status: ${response.status}`);
|
222 |
-
# }
|
223 |
-
|
224 |
-
# const data = await response.json();
|
225 |
-
# displayResponse(data.content);
|
226 |
-
# } catch (error) {
|
227 |
-
# console.error("There was an error fetching the response:", error);
|
228 |
-
# displayResponse("An error occurred while generating the response.");
|
229 |
-
# }
|
230 |
-
# });
|
231 |
-
|
232 |
-
# // Function to update selected goal information
|
233 |
-
# function updateSelectedGoalInfo(goal) {
|
234 |
-
# const selectedGoalDiv = d3.select("#selectedGoal");
|
235 |
-
# selectedGoalDiv.html(`
|
236 |
-
# <h3>${goal.name}</h3>
|
237 |
-
# <p>${goal.description}</p>
|
238 |
-
# `);
|
239 |
-
# }
|
240 |
-
|
241 |
-
# // Function to display the response from the server
|
242 |
-
# function displayResponse(content) {
|
243 |
-
# const responseBox = d3.select("#responseBox");
|
244 |
-
# responseBox.html(`
|
245 |
-
# <h2>Response</h2>
|
246 |
-
# <p>${content}</p>
|
247 |
-
# `);
|
248 |
-
# }
|
249 |
-
|
250 |
-
# // Handle mouse move event to highlight the closest goal
|
251 |
-
# svg.on("mousemove", function(event) {
|
252 |
-
# const [x, y] = d3.pointer(event);
|
253 |
-
# const closest = findClosestGoal(x, y);
|
254 |
-
# highlightClosestGoal(closest);
|
255 |
-
# });
|
256 |
-
|
257 |
-
# // Function to find the closest goal to the mouse pointer
|
258 |
-
# function findClosestGoal(x, y) {
|
259 |
-
# return goals.reduce((closest, goal) => {
|
260 |
-
# const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
|
261 |
-
# return distance < closest.distance ? { goal, distance } : closest;
|
262 |
-
# }, { goal: null, distance: Infinity }).goal;
|
263 |
-
# }
|
264 |
-
|
265 |
-
# // Function to highlight the closest goal
|
266 |
-
# function highlightClosestGoal(goal) {
|
267 |
-
# d3.select("#info").html(`Closest goal: ${goal.name}`);
|
268 |
-
# }
|
269 |
-
# </script>
|
270 |
-
# </body>
|
271 |
-
# </html>
|
272 |
-
# """
|
273 |
-
|
274 |
-
# # Gradio interface
|
275 |
-
# iface = gr.Interface(
|
276 |
-
# fn=generate_goals,
|
277 |
-
# inputs=gr.Textbox(label="Goal Name"),
|
278 |
-
# outputs=gr.Textbox(label="Generated Goals"),
|
279 |
-
# title="Exam Data Analysis Goals Generator",
|
280 |
-
# description="Click on a goal in the visualization to generate related goals.",
|
281 |
-
# allow_flagging="never",
|
282 |
-
# theme="default",
|
283 |
-
# css=html_content
|
284 |
-
# )
|
285 |
-
|
286 |
-
# if __name__ == "__main__":
|
287 |
-
# iface.launch()
|
288 |
-
# from flask import Flask, request, jsonify, render_template_string
|
289 |
-
# import os
|
290 |
-
# from mistralai.client import MistralClient
|
291 |
-
# from mistralai.models.chat_completion import ChatMessage
|
292 |
-
|
293 |
-
# app = Flask(__name__)
|
294 |
-
|
295 |
-
# # Mistral AI setup
|
296 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
297 |
-
# if not api_key:
|
298 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
299 |
-
|
300 |
-
# model = "mistral-tiny"
|
301 |
-
# client = MistralClient(api_key=api_key)
|
302 |
-
|
303 |
-
# def generate_goals(input_var):
|
304 |
-
# messages = [
|
305 |
-
# ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
306 |
-
# ]
|
307 |
-
# try:
|
308 |
-
# response = client.chat(model=model, messages=messages)
|
309 |
-
# return response.choices[0].message.content
|
310 |
-
# except Exception as e:
|
311 |
-
# return f"An error occurred: {str(e)}"
|
312 |
-
|
313 |
-
# html_content = """
|
314 |
-
# <!DOCTYPE html>
|
315 |
-
# <html lang="en">
|
316 |
-
# <head>
|
317 |
-
# <meta charset="UTF-8">
|
318 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
319 |
-
# <title>Exam Data Analysis Goals Generator</title>
|
320 |
-
# <script src="https://d3js.org/d3.v7.min.js"></script>
|
321 |
-
# <style>
|
322 |
-
# #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
323 |
-
# #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
324 |
-
# </style>
|
325 |
-
# </head>
|
326 |
-
# <body>
|
327 |
-
# <h1>Exam Data Analysis Goals Generator</h1>
|
328 |
-
# <div id="visualization"></div>
|
329 |
-
# <div id="generatedGoals"></div>
|
330 |
-
# <script>
|
331 |
-
# const width = 1200;
|
332 |
-
# const height = 800;
|
333 |
-
# const goals = [
|
334 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
335 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
336 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
337 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
338 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
339 |
-
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
340 |
-
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
341 |
-
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
342 |
-
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
343 |
-
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
344 |
-
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
345 |
-
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
346 |
-
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
347 |
-
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
348 |
-
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
349 |
-
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
350 |
-
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
351 |
-
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
352 |
-
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
353 |
-
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
354 |
-
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
355 |
-
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
356 |
-
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
357 |
-
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
358 |
-
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
359 |
-
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
360 |
-
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
361 |
-
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
362 |
-
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
363 |
-
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
364 |
-
# ];
|
365 |
-
# const connections = [
|
366 |
-
# { source: 1, target: 2 },
|
367 |
-
# { source: 2, target: 3 },
|
368 |
-
# { source: 3, target: 4 },
|
369 |
-
# { source: 4, target: 5 },
|
370 |
-
# { source: 5, target: 7 },
|
371 |
-
# { source: 6, target: 7 },
|
372 |
-
# { source: 7, target: 8 },
|
373 |
-
# { source: 8, target: 9 },
|
374 |
-
# { source: 9, target: 16 },
|
375 |
-
# { source: 10, target: 13 },
|
376 |
-
# { source: 11, target: 12 },
|
377 |
-
# { source: 12, target: 20 },
|
378 |
-
# { source: 13, target: 16 },
|
379 |
-
# { source: 14, target: 21 },
|
380 |
-
# { source: 15, target: 17 },
|
381 |
-
# { source: 16, target: 18 },
|
382 |
-
# { source: 17, target: 19 },
|
383 |
-
# { source: 18, target: 22 },
|
384 |
-
# { source: 19, target: 21 },
|
385 |
-
# { source: 20, target: 29 },
|
386 |
-
# { source: 21, target: 30 },
|
387 |
-
# { source: 22, target: 23 },
|
388 |
-
# { source: 23, target: 25 },
|
389 |
-
# { source: 24, target: 12 },
|
390 |
-
# { source: 25, target: 23 },
|
391 |
-
# { source: 26, target: 15 },
|
392 |
-
# { source: 27, target: 15 },
|
393 |
-
# { source: 28, target: 22 },
|
394 |
-
# { source: 29, target: 23 },
|
395 |
-
# { source: 30, target: 21 },
|
396 |
-
# // Additional connections for more interconnectivity
|
397 |
-
# { source: 1, target: 10 },
|
398 |
-
# { source: 2, target: 6 },
|
399 |
-
# { source: 3, target: 13 },
|
400 |
-
# { source: 4, target: 15 },
|
401 |
-
# { source: 5, target: 28 },
|
402 |
-
# { source: 8, target: 23 },
|
403 |
-
# { source: 11, target: 25 },
|
404 |
-
# { source: 14, target: 30 },
|
405 |
-
# { source: 24, target: 17 },
|
406 |
-
# { source: 26, target: 29 }
|
407 |
-
# ];
|
408 |
-
# const svg = d3.select("#visualization")
|
409 |
-
# .append("svg")
|
410 |
-
# .attr("width", width)
|
411 |
-
# .attr("height", height);
|
412 |
-
# const simulation = d3.forceSimulation(goals)
|
413 |
-
# .force("link", d3.forceLink(connections).id(d => d.id))
|
414 |
-
# .force("charge", d3.forceManyBody().strength(-400))
|
415 |
-
# .force("center", d3.forceCenter(width / 2, height / 2));
|
416 |
-
# const link = svg.append("g")
|
417 |
-
# .selectAll("line")
|
418 |
-
# .data(connections)
|
419 |
-
# .enter().append("line")
|
420 |
-
# .attr("stroke", "#999")
|
421 |
-
# .attr("stroke-opacity", 0.6);
|
422 |
-
# const node = svg.append("g")
|
423 |
-
# .selectAll("circle")
|
424 |
-
# .data(goals)
|
425 |
-
# .enter().append("circle")
|
426 |
-
# .attr("r", 10)
|
427 |
-
# .attr("fill", d => d.color)
|
428 |
-
# .call(d3.drag()
|
429 |
-
# .on("start", dragstarted)
|
430 |
-
# .on("drag", dragged)
|
431 |
-
# .on("end", dragended));
|
432 |
-
# const text = svg.append("g")
|
433 |
-
# .selectAll("text")
|
434 |
-
# .data(goals)
|
435 |
-
# .enter().append("text")
|
436 |
-
# .text(d => d.name)
|
437 |
-
# .attr("font-size", "12px")
|
438 |
-
# .attr("dx", 12)
|
439 |
-
# .attr("dy", 4);
|
440 |
-
# node.on("click", async function(event, d) {
|
441 |
-
# const response = await fetch('/generate_goals', {
|
442 |
-
# method: 'POST',
|
443 |
-
# headers: { 'Content-Type': 'application/json' },
|
444 |
-
# body: JSON.stringify({ input_var: d.name })
|
445 |
-
# });
|
446 |
-
# const data = await response.json();
|
447 |
-
# document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
448 |
-
# });
|
449 |
-
# simulation.on("tick", () => {
|
450 |
-
# link
|
451 |
-
# .attr("x1", d => d.source.x)
|
452 |
-
# .attr("y1", d => d.source.y)
|
453 |
-
# .attr("x2", d => d.target.x)
|
454 |
-
# .attr("y2", d => d.target.y);
|
455 |
-
# node
|
456 |
-
# .attr("cx", d => d.x)
|
457 |
-
# .attr("cy", d => d.y);
|
458 |
-
# text
|
459 |
-
# .attr("x", d => d.x)
|
460 |
-
# .attr("y", d => d.y);
|
461 |
-
# });
|
462 |
-
# function dragstarted(event) {
|
463 |
-
# if (!event.active) simulation.alphaTarget(0.3).restart();
|
464 |
-
# event.subject.fx = event.subject.x;
|
465 |
-
# event.subject.fy = event.subject.y;
|
466 |
-
# }
|
467 |
-
# function dragged(event) {
|
468 |
-
# event.subject.fx = event.x;
|
469 |
-
# event.subject.fy = event.y;
|
470 |
-
# }
|
471 |
-
# function dragended(event) {
|
472 |
-
# if (!event.active) simulation.alphaTarget(0);
|
473 |
-
# event.subject.fx = null;
|
474 |
-
# event.subject.fy = null;
|
475 |
-
# }
|
476 |
-
# </script>
|
477 |
-
# </body>
|
478 |
-
# </html>
|
479 |
-
# """
|
480 |
-
|
481 |
-
# @app.route('/')
|
482 |
-
# def index():
|
483 |
-
# return render_template_string(html_content)
|
484 |
-
|
485 |
-
# @app.route('/generate_goals', methods=['POST'])
|
486 |
-
# def generate_goals_api():
|
487 |
-
# input_var = request.json['input_var']
|
488 |
-
# goals = generate_goals(input_var)
|
489 |
-
# return jsonify({'goals': goals})
|
490 |
-
|
491 |
-
# if __name__ == "__main__":
|
492 |
-
# app.run(host='0.0.0.0', port=7860)
|
493 |
-
|
494 |
-
# imp
|
495 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
496 |
# from pyngrok import ngrok
|
497 |
import os
|
@@ -537,21 +43,81 @@ html_content = """
|
|
537 |
<script>
|
538 |
const width = 1200;
|
539 |
const height = 800;
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
const svg = d3.select("#visualization")
|
556 |
.append("svg")
|
557 |
.attr("width", width)
|
@@ -652,178 +218,4 @@ if __name__ == '__main__':
|
|
652 |
server = HTTPServer(('', port), MyHandler)
|
653 |
# public_url = ngrok.connect(port).public_url
|
654 |
# print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
|
655 |
-
server.serve_forever()
|
656 |
-
|
657 |
-
# here
|
658 |
-
# from http.server import HTTPServer, SimpleHTTPRequestHandler
|
659 |
-
# import os
|
660 |
-
# from mistralai.client import MistralClient
|
661 |
-
# from mistralai.models.chat_completion import ChatMessage
|
662 |
-
# import json
|
663 |
-
|
664 |
-
# # Mistral AI setup
|
665 |
-
# api_key = os.getenv("MISTRAL_API_KEY")
|
666 |
-
# if not api_key:
|
667 |
-
# raise ValueError("MISTRAL_API_KEY environment variable not set")
|
668 |
-
|
669 |
-
# model = "mistral-tiny"
|
670 |
-
# client = MistralClient(api_key=api_key)
|
671 |
-
|
672 |
-
# def generate_goals(input_var):
|
673 |
-
# messages = [
|
674 |
-
# ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
675 |
-
# ]
|
676 |
-
# try:
|
677 |
-
# response = client.chat(model=model, messages=messages)
|
678 |
-
# return response.choices[0].message.content
|
679 |
-
# except Exception as e:
|
680 |
-
# return f"An error occurred: {str(e)}"
|
681 |
-
|
682 |
-
# html_content = """
|
683 |
-
# <!DOCTYPE html>
|
684 |
-
# <html lang="en">
|
685 |
-
# <head>
|
686 |
-
# <meta charset="UTF-8">
|
687 |
-
# <meta name="viewport" content="width=device-width, initial-scale=1.0">
|
688 |
-
# <title>Exam Data Analysis Goals Generator</title>
|
689 |
-
# <script src="https://d3js.org/d3.v7.min.js"></script>
|
690 |
-
# <style>
|
691 |
-
# #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
692 |
-
# #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
693 |
-
# </style>
|
694 |
-
# </head>
|
695 |
-
# <body>
|
696 |
-
# <h1>Exam Data Analysis Goals Generator</h1>
|
697 |
-
# <div id="visualization"></div>
|
698 |
-
# <div id="generatedGoals"></div>
|
699 |
-
# <script>
|
700 |
-
# const width = 1200;
|
701 |
-
# const height = 800;
|
702 |
-
# const goals = [
|
703 |
-
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
704 |
-
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
705 |
-
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
706 |
-
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
707 |
-
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
708 |
-
# // Add more goals here...
|
709 |
-
# ];
|
710 |
-
# const connections = [
|
711 |
-
# { source: 1, target: 2 },
|
712 |
-
# { source: 2, target: 3 },
|
713 |
-
# { source: 3, target: 4 },
|
714 |
-
# { source: 4, target: 5 },
|
715 |
-
# // Add more connections here...
|
716 |
-
# ];
|
717 |
-
# const svg = d3.select("#visualization")
|
718 |
-
# .append("svg")
|
719 |
-
# .attr("width", width)
|
720 |
-
# .attr("height", height);
|
721 |
-
# const simulation = d3.forceSimulation(goals)
|
722 |
-
# .force("link", d3.forceLink(connections).id(d => d.id))
|
723 |
-
# .force("charge", d3.forceManyBody().strength(-400))
|
724 |
-
# .force("center", d3.forceCenter(width / 2, height / 2));
|
725 |
-
# const link = svg.append("g")
|
726 |
-
# .selectAll("line")
|
727 |
-
# .data(connections)
|
728 |
-
# .enter().append("line")
|
729 |
-
# .attr("stroke", "#999")
|
730 |
-
# .attr("stroke-opacity", 0.6);
|
731 |
-
# const node = svg.append("g")
|
732 |
-
# .selectAll("circle")
|
733 |
-
# .data(goals)
|
734 |
-
# .enter().append("circle")
|
735 |
-
# .attr("r", 10)
|
736 |
-
# .attr("fill", d => d.color || "#69b3a2")
|
737 |
-
# .call(d3.drag()
|
738 |
-
# .on("start", dragstarted)
|
739 |
-
# .on("drag", dragged)
|
740 |
-
# .on("end", dragended));
|
741 |
-
# const text = svg.append("g")
|
742 |
-
# .selectAll("text")
|
743 |
-
# .data(goals)
|
744 |
-
# .enter().append("text")
|
745 |
-
# .text(d => d.name)
|
746 |
-
# .attr("font-size", "12px")
|
747 |
-
# .attr("dx", 12)
|
748 |
-
# .attr("dy", 4);
|
749 |
-
# node.on("click", async function(event, d) {
|
750 |
-
# const response = await fetch('/generate_goals', {
|
751 |
-
# method: 'POST',
|
752 |
-
# headers: { 'Content-Type': 'application/json' },
|
753 |
-
# body: JSON.stringify({ input_var: d.name })
|
754 |
-
# });
|
755 |
-
# const data = await response.json();
|
756 |
-
# document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
757 |
-
# });
|
758 |
-
# simulation.on("tick", () => {
|
759 |
-
# link
|
760 |
-
# .attr("x1", d => d.source.x)
|
761 |
-
# .attr("y1", d => d.source.y)
|
762 |
-
# .attr("x2", d => d.target.x)
|
763 |
-
# .attr("y2", d => d.target.y);
|
764 |
-
# node
|
765 |
-
# .attr("cx", d => d.x)
|
766 |
-
# .attr("cy", d => d.y);
|
767 |
-
# text
|
768 |
-
# .attr("x", d => d.x)
|
769 |
-
# .attr("y", d => d.y);
|
770 |
-
# });
|
771 |
-
# function dragstarted(event) {
|
772 |
-
# if (!event.active) simulation.alphaTarget(0.3).restart();
|
773 |
-
# event.subject.fx = event.subject.x;
|
774 |
-
# event.subject.fy = event.subject.y;
|
775 |
-
# }
|
776 |
-
# function dragged(event) {
|
777 |
-
# event.subject.fx = event.x;
|
778 |
-
# event.subject.fy = event.y;
|
779 |
-
# }
|
780 |
-
# function dragended(event) {
|
781 |
-
# if (!event.active) simulation.alphaTarget(0);
|
782 |
-
# event.subject.fx = null;
|
783 |
-
# event.subject.fy = null;
|
784 |
-
# }
|
785 |
-
# </script>
|
786 |
-
# </body>
|
787 |
-
# </html>
|
788 |
-
# """
|
789 |
-
|
790 |
-
# class MyHandler(SimpleHTTPRequestHandler):
|
791 |
-
# def do_GET(self):
|
792 |
-
# self.send_response(200)
|
793 |
-
# self.send_header('Content-type', 'text/html')
|
794 |
-
# self.end_headers()
|
795 |
-
# self.wfile.write(html_content.encode())
|
796 |
-
|
797 |
-
# def do_POST(self):
|
798 |
-
# if self.path == '/generate_goals':
|
799 |
-
# try:
|
800 |
-
# content_length = int(self.headers['Content-Length'])
|
801 |
-
# post_data = self.rfile.read(content_length)
|
802 |
-
# data = json.loads(post_data.decode('utf-8'))
|
803 |
-
# input_var = data['input_var']
|
804 |
-
# goals = generate_goals(input_var)
|
805 |
-
|
806 |
-
# response = json.dumps({'goals': goals}).encode()
|
807 |
-
# self.send_response(200)
|
808 |
-
# self.send_header('Content-type', 'application/json')
|
809 |
-
# self.send_header('Content-Length', str(len(response)))
|
810 |
-
# self.end_headers()
|
811 |
-
# self.wfile.write(response)
|
812 |
-
# except Exception as e:
|
813 |
-
# logging.error(f"Error handling POST request: {str(e)}")
|
814 |
-
# self.send_error(500, f"Internal server error: {str(e)}")
|
815 |
-
# else:
|
816 |
-
# self.send_error(404)
|
817 |
-
|
818 |
-
# def run_server(port):
|
819 |
-
# try:
|
820 |
-
# server = ThreadingHTTPServer(('0.0.0.0', port), MyHandler)
|
821 |
-
# print(f"Server running on port {port}")
|
822 |
-
# server.serve_forever()
|
823 |
-
# except Exception as e:
|
824 |
-
# logging.error(f"Error running server: {str(e)}")
|
825 |
-
# traceback.print_exc()
|
826 |
-
|
827 |
-
# if __name__ == '__main__':
|
828 |
-
# port = int(os.environ.get("PORT", 7860))
|
829 |
-
# run_server(port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
2 |
# from pyngrok import ngrok
|
3 |
import os
|
|
|
43 |
<script>
|
44 |
const width = 1200;
|
45 |
const height = 800;
|
46 |
+
const goals = [
|
47 |
+
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
48 |
+
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
49 |
+
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
50 |
+
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
51 |
+
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
52 |
+
{ id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
53 |
+
{ id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
54 |
+
{ id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
55 |
+
{ id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
56 |
+
{ id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
57 |
+
{ id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
58 |
+
{ id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
59 |
+
{ id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
60 |
+
{ id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
61 |
+
{ id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
62 |
+
{ id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
63 |
+
{ id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
64 |
+
{ id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
65 |
+
{ id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
66 |
+
{ id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
67 |
+
{ id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
68 |
+
{ id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
69 |
+
{ id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
70 |
+
{ id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
71 |
+
{ id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
72 |
+
{ id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
73 |
+
{ id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
74 |
+
{ id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
75 |
+
{ id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
76 |
+
{ id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
77 |
+
];
|
78 |
+
const connections = [
|
79 |
+
{ source: 1, target: 2 },
|
80 |
+
{ source: 2, target: 3 },
|
81 |
+
{ source: 3, target: 4 },
|
82 |
+
{ source: 4, target: 5 },
|
83 |
+
{ source: 5, target: 7 },
|
84 |
+
{ source: 6, target: 7 },
|
85 |
+
{ source: 7, target: 8 },
|
86 |
+
{ source: 8, target: 9 },
|
87 |
+
{ source: 9, target: 16 },
|
88 |
+
{ source: 10, target: 13 },
|
89 |
+
{ source: 11, target: 12 },
|
90 |
+
{ source: 12, target: 20 },
|
91 |
+
{ source: 13, target: 16 },
|
92 |
+
{ source: 14, target: 21 },
|
93 |
+
{ source: 15, target: 17 },
|
94 |
+
{ source: 16, target: 18 },
|
95 |
+
{ source: 17, target: 19 },
|
96 |
+
{ source: 18, target: 22 },
|
97 |
+
{ source: 19, target: 21 },
|
98 |
+
{ source: 20, target: 29 },
|
99 |
+
{ source: 21, target: 30 },
|
100 |
+
{ source: 22, target: 23 },
|
101 |
+
{ source: 23, target: 25 },
|
102 |
+
{ source: 24, target: 12 },
|
103 |
+
{ source: 25, target: 23 },
|
104 |
+
{ source: 26, target: 15 },
|
105 |
+
{ source: 27, target: 15 },
|
106 |
+
{ source: 28, target: 22 },
|
107 |
+
{ source: 29, target: 23 },
|
108 |
+
{ source: 30, target: 21 },
|
109 |
+
// Additional connections for more interconnectivity
|
110 |
+
{ source: 1, target: 10 },
|
111 |
+
{ source: 2, target: 6 },
|
112 |
+
{ source: 3, target: 13 },
|
113 |
+
{ source: 4, target: 15 },
|
114 |
+
{ source: 5, target: 28 },
|
115 |
+
{ source: 8, target: 23 },
|
116 |
+
{ source: 11, target: 25 },
|
117 |
+
{ source: 14, target: 30 },
|
118 |
+
{ source: 24, target: 17 },
|
119 |
+
{ source: 26, target: 29 }
|
120 |
+
];
|
121 |
const svg = d3.select("#visualization")
|
122 |
.append("svg")
|
123 |
.attr("width", width)
|
|
|
218 |
server = HTTPServer(('', port), MyHandler)
|
219 |
# public_url = ngrok.connect(port).public_url
|
220 |
# print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
|
221 |
+
server.serve_forever()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|