Spaces:
Building
Building
# import gradio as gr | |
# import os | |
# from mistralai.client import MistralClient | |
# from mistralai.models.chat_completion import ChatMessage | |
# # Ensure the environment variable for the API key is set | |
# api_key = os.getenv("MISTRAL_API_KEY") | |
# if not api_key: | |
# raise ValueError("MISTRAL_API_KEY environment variable not set") | |
# model = "mistral-tiny" | |
# client = MistralClient(api_key=api_key) | |
# def generate_goals(input_var): | |
# messages = [ | |
# ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques") | |
# ] | |
# try: | |
# response = client.chat(model=model, messages=messages) | |
# content = response.choices[0].message.content | |
# return content | |
# except Exception as e: | |
# return f"An error occurred: {str(e)}" | |
# # HTML content | |
# html_content = """ | |
# <!DOCTYPE html> | |
# <html lang="en"> | |
# <head> | |
# <meta charset="UTF-8"> | |
# <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
# <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title> | |
# <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script> | |
# <style> | |
# body { font-family: Arial, sans-serif; margin: 20px; } | |
# #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; } | |
# .goal { cursor: pointer; } | |
# #info { margin-top: 20px; font-weight: bold; } | |
# #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; } | |
# #hoverInfo { | |
# position: absolute; | |
# padding: 10px; | |
# background-color: rgba(255, 255, 255, 0.9); | |
# border: 1px solid #ccc; | |
# border-radius: 5px; | |
# font-size: 14px; | |
# max-width: 300px; | |
# display: none; | |
# } | |
# #responseBox { | |
# margin-top: 20px; | |
# padding: 10px; | |
# border: 1px solid #ccc; | |
# background-color: #e0f7fa; | |
# } | |
# </style> | |
# </head> | |
# <body> | |
# <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1> | |
# <div id="goalSpace"></div> | |
# <div id="info"></div> | |
# <div id="selectedGoal"></div> | |
# <div id="hoverInfo"></div> | |
# <div id="responseBox"></div> | |
# <script> | |
# const width = 1200; | |
# const height = 800; | |
# // Define the goals and connections data | |
# const goals = [ | |
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." }, | |
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." }, | |
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." }, | |
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." }, | |
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." }, | |
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." }, | |
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." }, | |
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." }, | |
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." }, | |
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." }, | |
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." }, | |
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." }, | |
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." }, | |
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." }, | |
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." }, | |
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." }, | |
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." }, | |
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." }, | |
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." }, | |
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." }, | |
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." }, | |
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." }, | |
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." }, | |
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." }, | |
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." }, | |
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." }, | |
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." }, | |
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." }, | |
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." }, | |
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." } | |
# ]; | |
# const connections = [ | |
# { source: 1, target: 2 }, | |
# { source: 2, target: 3 }, | |
# { source: 3, target: 4 }, | |
# { source: 4, target: 5 }, | |
# { source: 5, target: 7 }, | |
# { source: 6, target: 7 }, | |
# { source: 7, target: 8 }, | |
# { source: 8, target: 9 }, | |
# { source: 9, target: 16 }, | |
# { source: 10, target: 13 }, | |
# { source: 11, target: 12 }, | |
# { source: 12, target: 20 }, | |
# { source: 13, target: 16 }, | |
# { source: 14, target: 21 }, | |
# { source: 15, target: 17 }, | |
# { source: 16, target: 18 }, | |
# { source: 17, target: 19 }, | |
# { source: 18, target: 22 }, | |
# { source: 19, target: 21 }, | |
# { source: 20, target: 29 }, | |
# { source: 21, target: 30 }, | |
# { source: 22, target: 23 }, | |
# { source: 23, target: 25 }, | |
# { source: 24, target: 12 }, | |
# { source: 25, target: 23 }, | |
# { source: 26, target: 15 }, | |
# { source: 27, target: 15 }, | |
# { source: 28, target: 22 }, | |
# { source: 29, target: 23 }, | |
# { source: 30, target: 21 }, | |
# // Additional connections for more interconnectivity | |
# { source: 1, target: 10 }, | |
# { source: 2, target: 6 }, | |
# { source: 3, target: 13 }, | |
# { source: 4, target: 15 }, | |
# { source: 5, target: 28 }, | |
# { source: 8, target: 23 }, | |
# { source: 11, target: 25 }, | |
# { source: 14, target: 30 }, | |
# { source: 24, target: 17 }, | |
# { source: 26, target: 29 } | |
# ]; | |
# // Create the SVG container for the goals and connections | |
# const svg = d3.select("#goalSpace") | |
# .append("svg") | |
# .attr("width", width) | |
# .attr("height", height); | |
# // Draw connections between goals | |
# const links = svg.selectAll("line") | |
# .data(connections) | |
# .enter() | |
# .append("line") | |
# .attr("x1", d => goals.find(g => g.id === d.source).x) | |
# .attr("y1", d => goals.find(g => g.id === d.source).y) | |
# .attr("x2", d => goals.find(g => g.id === d.target).x) | |
# .attr("y2", d => goals.find(g => g.id === d.target).y) | |
# .attr("stroke", "#999") | |
# .attr("stroke-width", 1) | |
# .attr("stroke-opacity", 0.6); | |
# // Draw goal nodes | |
# const goalNodes = svg.selectAll("circle") | |
# .data(goals) | |
# .enter() | |
# .append("circle") | |
# .attr("cx", d => d.x) | |
# .attr("cy", d => d.y) | |
# .attr("r", 10) | |
# .attr("fill", d => { | |
# if (d.id <= 10) return "blue"; | |
# if (d.id <= 20) return "green"; | |
# return "orange"; | |
# }) | |
# .attr("class", "goal"); | |
# // Add labels to the goals | |
# const goalLabels = svg.selectAll("text") | |
# .data(goals) | |
# .enter() | |
# .append("text") | |
# .attr("x", d => d.x + 15) | |
# .attr("y", d => d.y) | |
# .text(d => d.name) | |
# .attr("font-size", "12px"); | |
# // Hover info box | |
# const hoverInfo = d3.select("#hoverInfo"); | |
# // Add hover effects on goal nodes | |
# goalNodes.on("mouseover", function(event, d) { | |
# d3.select(this).attr("r", 15); | |
# hoverInfo.style("display", "block") | |
# .style("left", (event.pageX + 10) + "px") | |
# .style("top", (event.pageY - 10) + "px") | |
# .html(`<strong>${d.name}</strong><br>${d.description}`); | |
# }).on("mouseout", function() { | |
# d3.select(this).attr("r", 10); | |
# hoverInfo.style("display", "none"); | |
# }); | |
# // Handle click event on goal nodes | |
# goalNodes.on("click", async function(event, d) { | |
# updateSelectedGoalInfo(d); | |
# try { | |
# const response = await fetch('generate_goals', { | |
# method: 'POST', | |
# headers: { | |
# 'Content-Type': 'application/json', | |
# }, | |
# body: JSON.stringify({ input_var: d.name }) | |
# }); | |
# if (!response.ok) { | |
# throw new Error(`HTTP error! status: ${response.status}`); | |
# } | |
# const data = await response.json(); | |
# displayResponse(data.content); | |
# } catch (error) { | |
# console.error("There was an error fetching the response:", error); | |
# displayResponse("An error occurred while generating the response."); | |
# } | |
# }); | |
# // Function to update selected goal information | |
# function updateSelectedGoalInfo(goal) { | |
# const selectedGoalDiv = d3.select("#selectedGoal"); | |
# selectedGoalDiv.html(` | |
# <h3>${goal.name}</h3> | |
# <p>${goal.description}</p> | |
# `); | |
# } | |
# // Function to display the response from the server | |
# function displayResponse(content) { | |
# const responseBox = d3.select("#responseBox"); | |
# responseBox.html(` | |
# <h2>Response</h2> | |
# <p>${content}</p> | |
# `); | |
# } | |
# // Handle mouse move event to highlight the closest goal | |
# svg.on("mousemove", function(event) { | |
# const [x, y] = d3.pointer(event); | |
# const closest = findClosestGoal(x, y); | |
# highlightClosestGoal(closest); | |
# }); | |
# // Function to find the closest goal to the mouse pointer | |
# function findClosestGoal(x, y) { | |
# return goals.reduce((closest, goal) => { | |
# const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2)); | |
# return distance < closest.distance ? { goal, distance } : closest; | |
# }, { goal: null, distance: Infinity }).goal; | |
# } | |
# // Function to highlight the closest goal | |
# function highlightClosestGoal(goal) { | |
# d3.select("#info").html(`Closest goal: ${goal.name}`); | |
# } | |
# </script> | |
# </body> | |
# </html> | |
# """ | |
# # Gradio interface | |
# iface = gr.Interface( | |
# fn=generate_goals, | |
# inputs=gr.Textbox(label="Goal Name"), | |
# outputs=gr.Textbox(label="Generated Goals"), | |
# title="Exam Data Analysis Goals Generator", | |
# description="Click on a goal in the visualization to generate related goals.", | |
# allow_flagging="never", | |
# theme="default", | |
# css=html_content | |
# ) | |
# if __name__ == "__main__": | |
# iface.launch() | |
from flask import Flask, request, jsonify, render_template_string | |
import os | |
from mistralai.client import MistralClient | |
from mistralai.models.chat_completion import ChatMessage | |
app = Flask(__name__) | |
# Mistral AI setup | |
api_key = os.getenv("MISTRAL_API_KEY") | |
if not api_key: | |
raise ValueError("MISTRAL_API_KEY environment variable not set") | |
model = "mistral-tiny" | |
client = MistralClient(api_key=api_key) | |
def generate_goals(input_var): | |
messages = [ | |
ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.") | |
] | |
try: | |
response = client.chat(model=model, messages=messages) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
html_content = """ | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Exam Data Analysis Goals Generator</title> | |
<script src="https://d3js.org/d3.v7.min.js"></script> | |
<style> | |
#visualization { width: 100%; height: 600px; border: 1px solid #ccc; } | |
#generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; } | |
</style> | |
</head> | |
<body> | |
<h1>Exam Data Analysis Goals Generator</h1> | |
<div id="visualization"></div> | |
<div id="generatedGoals"></div> | |
<script> | |
const width = 1200; | |
const height = 800; | |
const goals = [ | |
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." }, | |
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." }, | |
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." }, | |
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." }, | |
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." }, | |
{ id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." }, | |
{ id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." }, | |
{ id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." }, | |
{ id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." }, | |
{ id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." }, | |
{ id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." }, | |
{ id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." }, | |
{ id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." }, | |
{ id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." }, | |
{ id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." }, | |
{ id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." }, | |
{ id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." }, | |
{ id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." }, | |
{ id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." }, | |
{ id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." }, | |
{ id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." }, | |
{ id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." }, | |
{ id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." }, | |
{ id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." }, | |
{ id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." }, | |
{ id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." }, | |
{ id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." }, | |
{ id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." }, | |
{ id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." }, | |
{ id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." } | |
]; | |
const connections = [ | |
{ source: 1, target: 2 }, | |
{ source: 2, target: 3 }, | |
{ source: 3, target: 4 }, | |
{ source: 4, target: 5 }, | |
{ source: 5, target: 7 }, | |
{ source: 6, target: 7 }, | |
{ source: 7, target: 8 }, | |
{ source: 8, target: 9 }, | |
{ source: 9, target: 16 }, | |
{ source: 10, target: 13 }, | |
{ source: 11, target: 12 }, | |
{ source: 12, target: 20 }, | |
{ source: 13, target: 16 }, | |
{ source: 14, target: 21 }, | |
{ source: 15, target: 17 }, | |
{ source: 16, target: 18 }, | |
{ source: 17, target: 19 }, | |
{ source: 18, target: 22 }, | |
{ source: 19, target: 21 }, | |
{ source: 20, target: 29 }, | |
{ source: 21, target: 30 }, | |
{ source: 22, target: 23 }, | |
{ source: 23, target: 25 }, | |
{ source: 24, target: 12 }, | |
{ source: 25, target: 23 }, | |
{ source: 26, target: 15 }, | |
{ source: 27, target: 15 }, | |
{ source: 28, target: 22 }, | |
{ source: 29, target: 23 }, | |
{ source: 30, target: 21 }, | |
// Additional connections for more interconnectivity | |
{ source: 1, target: 10 }, | |
{ source: 2, target: 6 }, | |
{ source: 3, target: 13 }, | |
{ source: 4, target: 15 }, | |
{ source: 5, target: 28 }, | |
{ source: 8, target: 23 }, | |
{ source: 11, target: 25 }, | |
{ source: 14, target: 30 }, | |
{ source: 24, target: 17 }, | |
{ source: 26, target: 29 } | |
]; | |
const svg = d3.select("#visualization") | |
.append("svg") | |
.attr("width", width) | |
.attr("height", height); | |
const simulation = d3.forceSimulation(goals) | |
.force("link", d3.forceLink(connections).id(d => d.id)) | |
.force("charge", d3.forceManyBody().strength(-400)) | |
.force("center", d3.forceCenter(width / 2, height / 2)); | |
const link = svg.append("g") | |
.selectAll("line") | |
.data(connections) | |
.enter().append("line") | |
.attr("stroke", "#999") | |
.attr("stroke-opacity", 0.6); | |
const node = svg.append("g") | |
.selectAll("circle") | |
.data(goals) | |
.enter().append("circle") | |
.attr("r", 10) | |
.attr("fill", d => d.color) | |
.call(d3.drag() | |
.on("start", dragstarted) | |
.on("drag", dragged) | |
.on("end", dragended)); | |
const text = svg.append("g") | |
.selectAll("text") | |
.data(goals) | |
.enter().append("text") | |
.text(d => d.name) | |
.attr("font-size", "12px") | |
.attr("dx", 12) | |
.attr("dy", 4); | |
node.on("click", async function(event, d) { | |
const response = await fetch('/generate_goals', { | |
method: 'POST', | |
headers: { 'Content-Type': 'application/json' }, | |
body: JSON.stringify({ input_var: d.name }) | |
}); | |
const data = await response.json(); | |
document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`; | |
}); | |
simulation.on("tick", () => { | |
link | |
.attr("x1", d => d.source.x) | |
.attr("y1", d => d.source.y) | |
.attr("x2", d => d.target.x) | |
.attr("y2", d => d.target.y); | |
node | |
.attr("cx", d => d.x) | |
.attr("cy", d => d.y); | |
text | |
.attr("x", d => d.x) | |
.attr("y", d => d.y); | |
}); | |
function dragstarted(event) { | |
if (!event.active) simulation.alphaTarget(0.3).restart(); | |
event.subject.fx = event.subject.x; | |
event.subject.fy = event.subject.y; | |
} | |
function dragged(event) { | |
event.subject.fx = event.x; | |
event.subject.fy = event.y; | |
} | |
function dragended(event) { | |
if (!event.active) simulation.alphaTarget(0); | |
event.subject.fx = null; | |
event.subject.fy = null; | |
} | |
</script> | |
</body> | |
</html> | |
""" | |
def index(): | |
return render_template_string(html_content) | |
def generate_goals_api(): | |
input_var = request.json['input_var'] | |
goals = generate_goals(input_var) | |
return jsonify({'goals': goals}) | |
if __name__ == "__main__": | |
app.run(host='0.0.0.0', port=7860) |