Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +147 -0
- openai_client.py +148 -0
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from openai_client import (
|
3 |
+
get_code_review_response,
|
4 |
+
refactor_code,
|
5 |
+
code_feedback,
|
6 |
+
suggest_best_practices,
|
7 |
+
remove_code_errors,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("CodeMentor - (AI-Enhanced Code Collaboration Tool)")
|
13 |
+
st.subheader("Collaborate, Refactor, and Optimize with AI.")
|
14 |
+
st.write(
|
15 |
+
"A smart tool for distributed teams to automate code reviews, refactor efficiently, and get real-time AI-driven feedback."
|
16 |
+
)
|
17 |
+
|
18 |
+
# Instructions
|
19 |
+
st.write(
|
20 |
+
"Upload a file or paste your code below to get an AI-generated code review."
|
21 |
+
)
|
22 |
+
|
23 |
+
# Input Methods: File Upload or Text Area
|
24 |
+
uploaded_file = st.file_uploader(
|
25 |
+
"Upload a code file (Max 500 lines)", type=["py", "js", "txt"]
|
26 |
+
)
|
27 |
+
code_input = st.text_area("Or paste your code here (Max 1000 words)", height=300)
|
28 |
+
|
29 |
+
# Limit input size for code
|
30 |
+
if uploaded_file:
|
31 |
+
code = uploaded_file.read().decode("utf-8")
|
32 |
+
if len(code.splitlines()) > 500:
|
33 |
+
st.error(
|
34 |
+
"File is too large! Please upload a file with a maximum of 500 lines."
|
35 |
+
)
|
36 |
+
code = None # Reset code if it's too large
|
37 |
+
else:
|
38 |
+
st.success(f"File uploaded: {uploaded_file.name}")
|
39 |
+
elif code_input:
|
40 |
+
code = code_input
|
41 |
+
if len(code.split()) > 1000:
|
42 |
+
st.error("Code exceeds 1000 words! Please shorten your code.")
|
43 |
+
code = None # Reset code if it's too large
|
44 |
+
else:
|
45 |
+
code = None
|
46 |
+
|
47 |
+
# Button to trigger code review
|
48 |
+
if st.button("Get Code Review") and code:
|
49 |
+
with st.spinner("Processing..."):
|
50 |
+
# Call the OpenAI API to get code review
|
51 |
+
review = get_code_review_response(code)
|
52 |
+
st.subheader("Code Review Results:")
|
53 |
+
st.write(review)
|
54 |
+
|
55 |
+
# Provide download option
|
56 |
+
st.download_button(
|
57 |
+
label="Download Code Review",
|
58 |
+
data=review,
|
59 |
+
file_name="code_review.txt",
|
60 |
+
mime="text/plain",
|
61 |
+
)
|
62 |
+
st.success("You can download the code review as code_review.txt")
|
63 |
+
|
64 |
+
# Button to trigger code refactoring
|
65 |
+
if st.button("Refactor Code") and code:
|
66 |
+
with st.spinner("Refactoring your code..."):
|
67 |
+
refactored_code = refactor_code(code)
|
68 |
+
st.subheader("Refactored Code:")
|
69 |
+
st.write(refactored_code)
|
70 |
+
|
71 |
+
# Provide download option for refactored code
|
72 |
+
st.download_button(
|
73 |
+
label="Download Refactored Code",
|
74 |
+
data=refactored_code,
|
75 |
+
file_name="refactored_code.txt",
|
76 |
+
mime="text/plain",
|
77 |
+
)
|
78 |
+
st.success("You can download the refactored code as refactored_code.txt")
|
79 |
+
|
80 |
+
# Button to trigger code feedback
|
81 |
+
if st.button("Get Code Feedback") and code:
|
82 |
+
with st.spinner("Getting feedback on your code..."):
|
83 |
+
feedback = code_feedback(code)
|
84 |
+
st.subheader("Code Feedback:")
|
85 |
+
st.write(feedback)
|
86 |
+
|
87 |
+
# Ensure feedback is a string for download
|
88 |
+
feedback_text = feedback if isinstance(feedback, str) else str(feedback)
|
89 |
+
|
90 |
+
# Provide download option for code feedback
|
91 |
+
st.download_button(
|
92 |
+
label="Download Code Feedback",
|
93 |
+
data=feedback_text, # Use the extracted string here
|
94 |
+
file_name="code_feedback.txt",
|
95 |
+
mime="text/plain",
|
96 |
+
)
|
97 |
+
st.success("You can download the code feedback as code_feedback.txt")
|
98 |
+
|
99 |
+
# Add button to suggest best practices
|
100 |
+
if st.button("Suggest Best Practices") and code:
|
101 |
+
with st.spinner("Getting best practices..."):
|
102 |
+
best_practices = suggest_best_practices(code)
|
103 |
+
st.subheader("Best Practices Suggestions:")
|
104 |
+
st.write(best_practices)
|
105 |
+
|
106 |
+
# Provide download option for best practices suggestions
|
107 |
+
best_practices_text = (
|
108 |
+
best_practices
|
109 |
+
if isinstance(best_practices, str)
|
110 |
+
else str(best_practices)
|
111 |
+
)
|
112 |
+
st.download_button(
|
113 |
+
label="Download Best Practices Suggestions",
|
114 |
+
data=best_practices_text,
|
115 |
+
file_name="best_practices.txt",
|
116 |
+
mime="text/plain",
|
117 |
+
)
|
118 |
+
st.success(
|
119 |
+
"You can download the best practices suggestions as best_practices.txt"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Button to trigger error removal
|
123 |
+
if st.button("Remove Code Errors") and code:
|
124 |
+
with st.spinner("Removing errors from your code..."):
|
125 |
+
error_removal_suggestions = remove_code_errors(code)
|
126 |
+
st.subheader("Error Removal Suggestions:")
|
127 |
+
st.write(error_removal_suggestions)
|
128 |
+
|
129 |
+
# Provide download option for error removal suggestions
|
130 |
+
error_removal_text = (
|
131 |
+
error_removal_suggestions
|
132 |
+
if isinstance(error_removal_suggestions, str)
|
133 |
+
else str(error_removal_suggestions)
|
134 |
+
)
|
135 |
+
st.download_button(
|
136 |
+
label="Download Error Removal Suggestions",
|
137 |
+
data=error_removal_text,
|
138 |
+
file_name="error_removal_suggestions.txt",
|
139 |
+
mime="text/plain",
|
140 |
+
)
|
141 |
+
st.success(
|
142 |
+
"You can download the error removal suggestions as error_removal_suggestions.txt"
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|
openai_client.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from openai import OpenAI
|
4 |
+
import anthropic
|
5 |
+
|
6 |
+
# Load environment variables from .env file
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
client = OpenAI(
|
10 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
11 |
+
base_url=os.getenv("OPENAI_API_BASE"), # Uncomment if using a custom base URL
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
# Function to get GPT-4o Mini response
|
16 |
+
def get_code_review_response(prompt, max_tokens=1000):
|
17 |
+
try:
|
18 |
+
response = client.chat.completions.create(
|
19 |
+
model="gpt-4o-mini",
|
20 |
+
messages=[
|
21 |
+
{
|
22 |
+
"role": "system",
|
23 |
+
"content": "You are an AI assistant who helps users in code reviews by deep thinking in points max 5-6 point shortly.",
|
24 |
+
},
|
25 |
+
{"role": "user", "content": prompt},
|
26 |
+
],
|
27 |
+
max_tokens=max_tokens,
|
28 |
+
)
|
29 |
+
return response.choices[0].message.content
|
30 |
+
except Exception as e:
|
31 |
+
return "Sorry, an error occurred while generating your idea. Please try again later."
|
32 |
+
|
33 |
+
|
34 |
+
# Function to refactor code
|
35 |
+
def refactor_code(code_snippet):
|
36 |
+
try:
|
37 |
+
response = client.chat.completions.create(
|
38 |
+
model="gpt-4o-2024-08-06",
|
39 |
+
messages=[
|
40 |
+
{
|
41 |
+
"role": "system",
|
42 |
+
"content": "You are an expert code refactoring assistant.",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": f"Refactor the following code. Do not provide any explanation or comments, just return the refactored code.\n{code_snippet}",
|
47 |
+
},
|
48 |
+
],
|
49 |
+
)
|
50 |
+
refactored_code = response.choices[0].message.content
|
51 |
+
return refactored_code
|
52 |
+
except Exception as e:
|
53 |
+
return "Sorry, an error occurred while refactoring your code. Please try again later."
|
54 |
+
|
55 |
+
|
56 |
+
# Initialize the Anthropic client
|
57 |
+
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
58 |
+
|
59 |
+
|
60 |
+
# Function to get feedback on code using Anthropic
|
61 |
+
def code_feedback(code_snippet):
|
62 |
+
try:
|
63 |
+
response = anthropic_client.messages.create(
|
64 |
+
model="claude-3-5-sonnet-20240620",
|
65 |
+
max_tokens=1024,
|
66 |
+
messages=[
|
67 |
+
{
|
68 |
+
"role": "user",
|
69 |
+
"content": f"Please provide feedback on the given code, don't refactor the code:\n{code_snippet}",
|
70 |
+
},
|
71 |
+
],
|
72 |
+
)
|
73 |
+
|
74 |
+
# Extract feedback text from the response
|
75 |
+
feedback = response.text if hasattr(response, "text") else str(response)
|
76 |
+
|
77 |
+
# Check if feedback is a Message object and extract text if necessary
|
78 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
79 |
+
feedback = "\n\n".join(
|
80 |
+
[
|
81 |
+
text_block.text
|
82 |
+
for text_block in response.content
|
83 |
+
if hasattr(text_block, "text")
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
return feedback
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return "Sorry, an error occurred while getting feedback on your code. Please try again later."
|
91 |
+
|
92 |
+
|
93 |
+
# Function to suggest best coding practices based on given code
|
94 |
+
def suggest_best_practices(code_snippet):
|
95 |
+
try:
|
96 |
+
response = anthropic_client.messages.create(
|
97 |
+
model="claude-3-5-sonnet-20240620",
|
98 |
+
max_tokens=1024,
|
99 |
+
messages=[
|
100 |
+
{
|
101 |
+
"role": "user",
|
102 |
+
"content": (
|
103 |
+
f"Based on the following code, suggest best practices max 5-6 point shortly"
|
104 |
+
f"for coding patterns that align with industry standards: \n{code_snippet}"
|
105 |
+
),
|
106 |
+
},
|
107 |
+
],
|
108 |
+
)
|
109 |
+
|
110 |
+
# Extract suggestions from the response
|
111 |
+
best_practices = response.text if hasattr(response, "text") else str(response)
|
112 |
+
|
113 |
+
# Check if the feedback is a Message object and extract text if necessary
|
114 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
115 |
+
best_practices = "\n\n".join(
|
116 |
+
[
|
117 |
+
text_block.text
|
118 |
+
for text_block in response.content
|
119 |
+
if hasattr(text_block, "text")
|
120 |
+
]
|
121 |
+
)
|
122 |
+
|
123 |
+
return best_practices
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
return "Sorry, an error occurred while suggesting best practices. Please try again later."
|
127 |
+
|
128 |
+
|
129 |
+
# Function to remove code errors
|
130 |
+
def remove_code_errors(code_snippet):
|
131 |
+
try:
|
132 |
+
response = client.chat.completions.create(
|
133 |
+
model="gpt-4o-mini",
|
134 |
+
messages=[
|
135 |
+
{
|
136 |
+
"role": "system",
|
137 |
+
"content": "You are an expert in debugging code. Provide concise suggestions to remove errors from the following code snippet.",
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"role": "user",
|
141 |
+
"content": f"Identify and suggest fixes for errors in the following code:\n{code_snippet}",
|
142 |
+
},
|
143 |
+
],
|
144 |
+
)
|
145 |
+
error_removal_suggestions = response.choices[0].message.content
|
146 |
+
return error_removal_suggestions
|
147 |
+
except Exception as e:
|
148 |
+
return "Sorry, an error occurred while removing code errors. Please try again later."
|