haotiz's picture
initial commit
708dec4
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
helper class that supports empty tensors on some nn functions.
Ideally, add support directly in PyTorch to empty tensors in
those functions.
This can be removed once https://github.com/pytorch/pytorch/issues/12013
is implemented
"""
import math
import torch
from torch.nn.modules.utils import _ntuple
class _NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return _NewEmptyTensorOp.apply(grad, shape), None
class Conv2d(torch.nn.Conv2d):
def forward(self, x):
if x.numel() > 0:
return super(Conv2d, self).forward(x)
# get output shape
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
)
]
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class ConvTranspose2d(torch.nn.ConvTranspose2d):
def forward(self, x):
if x.numel() > 0:
return super(ConvTranspose2d, self).forward(x)
# get output shape
output_shape = [
(i - 1) * d - 2 * p + (di * (k - 1) + 1) + op
for i, p, di, k, d, op in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride,
self.output_padding,
)
]
output_shape = [x.shape[0], self.bias.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class BatchNorm2d(torch.nn.BatchNorm2d):
def forward(self, x):
if x.numel() > 0:
return super(BatchNorm2d, self).forward(x)
# get output shape
output_shape = x.shape
return _NewEmptyTensorOp.apply(x, output_shape)
def interpolate(
input, size=None, scale_factor=None, mode="nearest", align_corners=None
):
if input.numel() > 0:
return torch.nn.functional.interpolate(
input, size, scale_factor, mode, align_corners
)
def _check_size_scale_factor(dim):
if size is None and scale_factor is None:
raise ValueError("either size or scale_factor should be defined")
if size is not None and scale_factor is not None:
raise ValueError("only one of size or scale_factor should be defined")
if (
scale_factor is not None
and isinstance(scale_factor, tuple)
and len(scale_factor) != dim
):
raise ValueError(
"scale_factor shape must match input shape. "
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
)
def _output_size(dim):
_check_size_scale_factor(dim)
if size is not None:
return size
scale_factors = _ntuple(dim)(scale_factor)
# math.floor might return float in py2.7
return [
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
]
output_shape = tuple(_output_size(2))
output_shape = input.shape[:-2] + output_shape
return _NewEmptyTensorOp.apply(input, output_shape)
class Scale(torch.nn.Module):
def __init__(self, init_value=1.0):
super(Scale, self).__init__()
self.scale = torch.nn.Parameter(torch.FloatTensor([init_value]))
def forward(self, input):
return input * self.scale
class DFConv2d(torch.nn.Module):
"""Deformable convolutional layer"""
def __init__(
self,
in_channels,
out_channels,
with_modulated_dcn=True,
kernel_size=3,
stride=1,
groups=1,
padding=1,
dilation=1,
deformable_groups=1,
bias=False
):
super(DFConv2d, self).__init__()
if isinstance(kernel_size, (list, tuple)):
assert len(kernel_size) == 2
offset_base_channels = kernel_size[0] * kernel_size[1]
else:
offset_base_channels = kernel_size * kernel_size
if with_modulated_dcn:
from maskrcnn_benchmark.layers import ModulatedDeformConv
offset_channels = offset_base_channels * 3 #default: 27
conv_block = ModulatedDeformConv
else:
from maskrcnn_benchmark.layers import DeformConv
offset_channels = offset_base_channels * 2 #default: 18
conv_block = DeformConv
self.offset = Conv2d(
in_channels,
deformable_groups * offset_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=1,
dilation=dilation
)
for l in [self.offset, ]:
torch.nn.init.kaiming_uniform_(l.weight, a=1)
torch.nn.init.constant_(l.bias, 0.)
self.conv = conv_block(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
deformable_groups=deformable_groups,
bias=bias
)
self.with_modulated_dcn = with_modulated_dcn
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.offset_base_channels = offset_base_channels
def forward(self, x):
if x.numel() > 0:
if not self.with_modulated_dcn:
offset = self.offset(x)
x = self.conv(x, offset)
else:
offset_mask = self.offset(x)
split_point = self.offset_base_channels * 2
offset = offset_mask[:, :split_point, :, :]
mask = offset_mask[:, split_point:, :, :].sigmoid()
x = self.conv(x, offset, mask)
return x
# get output shape
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride
)
]
output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)