Spaces:
Running
on
A10G
Running
on
A10G
File size: 7,471 Bytes
ea270ed 984cfda ea270ed f3ecefe 984cfda ea270ed 984cfda ea270ed 984cfda ea270ed 984cfda ea270ed 984cfda ea270ed bf49b51 ea270ed 984cfda ea270ed 984cfda ea270ed bf49b51 984cfda bf49b51 984cfda ea270ed bf49b51 ea270ed 885915f bf49b51 984cfda ea270ed bf49b51 ea270ed bf49b51 885915f bf49b51 ea270ed bf49b51 ea270ed bf49b51 ea270ed bf49b51 ea270ed 984cfda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
from diffusers import AudioLDM2Pipeline
# make Space compatible with CPU duplicates
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
# load the diffusers pipeline
repo_id = "cvssp/audioldm2"
pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
# pipe.unet = torch.compile(pipe.unet)
# set the generator for reproducibility
generator = torch.Generator(device)
def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates):
if text is None:
raise gr.Error("Please provide a text input.")
waveforms = pipe(
text,
audio_length_in_s=duration,
guidance_scale=guidance_scale,
num_inference_steps=200,
negative_prompt=negative_prompt,
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
generator=generator.manual_seed(int(random_seed)),
)["audios"]
return gr.make_waveform((16000, waveforms[0]), bg_image="bg.png")
iface = gr.Blocks()
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
AudioLDM 2: A General Framework for Audio, Music, and Speech Generation
</h1>
</div> <p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2308.05734">[Paper]</a> <a href="https://audioldm.github.io/audioldm2">[Project
page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2">[🧨
Diffusers]</a>
</p>
</div>
"""
)
gr.HTML("""This is the demo for AudioLDM 2, powered by 🧨 Diffusers. Demo uses the checkpoint <a
href="https://huggingface.co/cvssp/audioldm2"> AudioLDM 2 base</a>. For faster inference without waiting in
queue, you may duplicate the space and upgrade to a GPU in the settings.""")
gr.DuplicateButton()
with gr.Group():
textbox = gr.Textbox(
value="The vibrant beat of Brazilian samba drums.",
max_lines=1,
label="Input text",
info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.",
elem_id="prompt-in",
)
negative_textbox = gr.Textbox(
value="Low quality.",
max_lines=1,
label="Negative prompt",
info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.",
elem_id="prompt-in",
)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(
value=45,
label="Seed",
info="Change this value (any integer number) will lead to a different generation result.",
)
# duration = gr.Slider(5, 15, value=10, step=2.5, label="Duration (seconds)")
guidance_scale = gr.Slider(
0,
7,
value=3.5,
step=0.5,
label="Guidance scale",
info="Larger => better quality and relevancy to text; Smaller => better diversity",
)
n_candidates = gr.Slider(
1,
5,
value=3,
step=1,
label="Number waveforms to generate",
info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A larger value usually lead to better quality with heavier computation",
)
outputs = gr.Video(label="Output", elem_id="output-video")
btn = gr.Button("Submit")
btn.click(
text2audio,
# inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
inputs=[textbox, negative_textbox, 10, guidance_scale, seed, n_candidates],
outputs=[outputs],
)
gr.HTML(
"""
<div class="footer" style="text-align: center">
<p>Share your generations with the community by clicking the share icon at the top right the generated audio!</p>
<p>Follow the latest update of AudioLDM 2 on our<a href="https://audioldm.github.io/audioldm2"
style="text-decoration: underline;" target="_blank"> Github repo</a> </p>
<p>Model by <a
href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe
Liu</a>. Code and demo by 🤗 Hugging Face.</p>
</div>
"""
)
gr.Examples(
[
["A hammer is hitting a wooden surface.", "Low quality.", 10, 3.5, 45, 3],
["A cat is meowing for attention.", "Low quality.", 10, 3.5, 45, 3],
["An excited crowd cheering at a sports game.", "Low quality.", 10, 3.5, 45, 3],
["Birds singing sweetly in a blooming garden.", "Low quality.", 10, 3.5, 45, 3],
["A modern synthesizer creating futuristic soundscapes.", "Low quality.", 10, 3.5, 45, 3],
["The vibrant beat of Brazilian samba drums.", "Low quality.", 10, 3.5, 45, 3],
],
fn=text2audio,
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
cache_examples=True,
)
gr.HTML(
"""
<div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated
Audio</p>
<p>1. Try using more adjectives to describe your sound. For example: "A man is speaking
clearly and slowly in a large room" is better than "A man is speaking".</p>
<p>2. Try using different random seeds, which can significantly affect the quality of the generated
output.</p>
<p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or
abstract objects that humans may not be familiar with.</p>
<p>4. Using a negative prompt to not guide the diffusion process can improve the
audio quality significantly. Try using negative prompts like 'low quality'.</p>
</div>
"""
)
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>,
<a href="https://freesound.org/">Freesound</a> and <a
href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo
based on the <a
href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK
copyright exception</a> of data for academic research.
</p>
</div>
"""
)
iface.queue(max_size=20).launch()
|