Spaces:
Running
on
L4
Running
on
L4
import os | |
import argparse | |
import yaml | |
import torch | |
from audioldm import LatentDiffusion, seed_everything | |
from audioldm.utils import default_audioldm_config | |
import time | |
def make_batch_for_text_to_audio(text, batchsize=1): | |
text = [text] * batchsize | |
if batchsize < 1: | |
print("Warning: Batchsize must be at least 1. Batchsize is set to .") | |
fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format | |
stft = torch.zeros((batchsize, 1024, 512)) # Not used | |
waveform = torch.zeros((batchsize, 160000)) # Not used | |
fname = [""] * batchsize # Not used | |
batch = ( | |
fbank, | |
stft, | |
None, | |
fname, | |
waveform, | |
text, | |
) | |
return batch | |
def build_model(config=None): | |
if(torch.cuda.is_available()): | |
device = torch.device("cuda:0") | |
else: | |
device = torch.device("cpu") | |
if(config is not None): | |
assert type(config) is str | |
config = yaml.load(open(config, "r"), Loader=yaml.FullLoader) | |
else: | |
config = default_audioldm_config() | |
# Use text as condition instead of using waveform during training | |
config["model"]["params"]["device"] = device | |
config["model"]["params"]["cond_stage_key"] = "text" | |
# No normalization here | |
latent_diffusion = LatentDiffusion(**config["model"]["params"]) | |
resume_from_checkpoint = "./ckpt/ldm_trimmed.ckpt" | |
checkpoint = torch.load(resume_from_checkpoint, map_location=device) | |
latent_diffusion.load_state_dict(checkpoint["state_dict"]) | |
latent_diffusion.eval() | |
latent_diffusion = latent_diffusion.to(device) | |
latent_diffusion.cond_stage_model.embed_mode = "text" | |
return latent_diffusion | |
def duration_to_latent_t_size(duration): | |
return int(duration * 25.6) | |
def text_to_audio(latent_diffusion, text, seed=42, duration=10, batchsize=1, guidance_scale=2.5, n_candidate_gen_per_text=3, config=None): | |
seed_everything(int(seed)) | |
batch = make_batch_for_text_to_audio(text, batchsize=batchsize) | |
latent_diffusion.latent_t_size = duration_to_latent_t_size(duration) | |
with torch.no_grad(): | |
waveform = latent_diffusion.generate_sample( | |
[batch], | |
unconditional_guidance_scale=guidance_scale, | |
n_candidate_gen_per_text=n_candidate_gen_per_text, | |
duration=duration | |
) | |
return waveform | |