Spaces:
Running
on
L4
Running
on
L4
File size: 13,255 Bytes
41ceddd 3c4ad5e 541c07d c55c219 3c4ad5e 41ceddd c55c219 3c4ad5e c55c219 3c4ad5e 41ceddd 3c4ad5e c55c219 3c4ad5e b700c02 7f243f4 3c4ad5e bdab1da 3c4ad5e 4eab478 4b70abe c2362ff 4b70abe 3c4ad5e c2362ff 3c4ad5e 4b70abe 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e c2362ff 3c4ad5e 4b70abe 3c4ad5e 4b70abe c2362ff 4eab478 858c11b 3c4ad5e 858c11b 8f019f2 c2362ff 858c11b 3c4ad5e 858c11b 4b70abe 3c4ad5e 858c11b 3c4ad5e c55c219 4e9d8a1 3c4ad5e 50bdb19 3c4ad5e 858c11b 4b70abe 91dd1a0 4b70abe 3c4ad5e 4b70abe 3c4ad5e 858c11b 3c4ad5e 858c11b 3c4ad5e 4b70abe 3c4ad5e 56c7c7f 4b70abe 3c4ad5e 541c07d 4b70abe 541c07d 3c4ad5e 541c07d 4b70abe db19271 4b70abe 77c9d7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
import torch
from diffusers import AudioLDMPipeline
from share_btn import community_icon_html, loading_icon_html, share_js
from transformers import AutoProcessor, ClapModel
# make Space compatible with CPU duplicates
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
# load the diffusers pipeline
repo_id = "cvssp/audioldm-m-full"
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
pipe.unet = torch.compile(pipe.unet)
# CLAP model (only required for automatic scoring)
clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device)
processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full")
generator = torch.Generator(device)
def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates):
if text is None:
raise gr.Error("Please provide a text input.")
waveforms = pipe(
text,
audio_length_in_s=duration,
guidance_scale=guidance_scale,
num_inference_steps=100,
negative_prompt=negative_prompt,
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
generator=generator.manual_seed(int(random_seed)),
)["audios"]
if waveforms.shape[0] > 1:
waveform = score_waveforms(text, waveforms)
else:
waveform = waveforms[0]
return gr.make_waveform((16000, waveform), bg_image="bg.png")
def score_waveforms(text, waveforms):
inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score
probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities
most_probable = torch.argmax(probs) # and now select the most likely audio waveform
waveform = waveforms[most_probable]
return waveform
css = """
a {
color: inherit; text-decoration: underline;
} .gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
} .gr-button {
color: white; border-color: #000000; background: #000000;
} input[type='range'] {
accent-color: #000000;
} .dark input[type='range'] {
accent-color: #dfdfdf;
} .container {
max-width: 730px; margin: auto; padding-top: 1.5rem;
} #gallery {
min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius:
.5rem !important; border-bottom-left-radius: .5rem !important;
} #gallery>div>.h-full {
min-height: 20rem;
} .details:hover {
text-decoration: underline;
} .gr-button {
white-space: nowrap;
} .gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow:
var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width)
var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px
var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 /
var(--tw-ring-opacity)); --tw-ring-opacity: .5;
} #advanced-btn {
font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px;
border-radius: 14px !important;
} #advanced-options {
margin-bottom: 20px;
} .footer {
margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5;
} .footer>p {
font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white;
} .dark .footer {
border-color: #303030;
} .dark .footer>p {
background: #0b0f19;
} .acknowledgments h4{
margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%;
} #container-advanced-btns{
display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center;
} .animate-spin {
animation: spin 1s linear infinite;
} @keyframes spin {
from {
transform: rotate(0deg);
} to {
transform: rotate(360deg);
}
} #share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color:
#000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px; margin-left: auto;
} #share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem
!important;right:0;
} #share-btn * {
all: unset;
} #share-btn-container div:nth-child(-n+2){
width: auto !important; min-height: 0px !important;
} #share-btn-container .wrap {
display: none !important;
} .gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
} #prompt-container{
gap: 0;
} #generated_id{
min-height: 700px
} #setting_id{
margin-bottom: 12px; text-align: center; font-weight: 900;
}
"""
iface = gr.Blocks(css=css)
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
</h1>
</div> <p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project
page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm">[🧨
Diffusers]</a>
</p>
</div>
"""
)
gr.HTML(
"""
<p>This is the demo for AudioLDM, powered by 🧨 Diffusers. Demo uses the checkpoint <a
href="https://huggingface.co/cvssp/audioldm-m-full"> audioldm-m-full </a>. For faster inference without waiting in
queue, you may duplicate the space and upgrade to a GPU in the settings. <br/> <a
href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true"> <img
style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> <p/>
"""
)
with gr.Group():
with gr.Box():
textbox = gr.Textbox(
value="A hammer is hitting a wooden surface",
max_lines=1,
label="Input text",
info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.",
elem_id="prompt-in",
)
negative_textbox = gr.Textbox(
value="low quality, average quality",
max_lines=1,
label="Negative prompt",
info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.",
elem_id="prompt-in",
)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(
value=45,
label="Seed",
info="Change this value (any integer number) will lead to a different generation result.",
)
duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
guidance_scale = gr.Slider(
0,
5,
value=3.5,
step=0.5,
label="Guidance scale",
info="Large => better quality and relevancy to text; Small => better diversity",
)
n_candidates = gr.Slider(
1,
3,
value=3,
step=1,
label="Number waveforms to generate",
info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
)
outputs = gr.Video(label="Output", elem_id="output-video")
btn = gr.Button("Submit").style(full_width=True)
with gr.Group(elem_id="share-btn-container", visible=False):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
btn.click(
text2audio,
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
)
share_button.click(None, [], [], _js=share_js)
gr.HTML(
"""
<div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
<p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM"
style="text-decoration: underline;" target="_blank"> Github repo</a> </p> <br> <p>Model by <a
href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe
Liu</a>. Code and demo by 🤗 Hugging Face.</p> <br>
</div>
"""
)
gr.Examples(
[
["A hammer is hitting a wooden surface", "low quality, average quality", 5, 2.5, 45, 3],
["Peaceful and calming ambient music with singing bowl and other instruments.", "low quality, average quality", 5, 2.5, 45, 3],
["A man is speaking in a small room.", "low quality, average quality", 5, 2.5, 45, 3],
["A female is speaking followed by footstep sound", "low quality, average quality", 5, 2.5, 45, 3],
["Wooden table tapping sound followed by water pouring sound.", "low quality, average quality", 5, 2.5, 45, 3],
],
fn=text2audio,
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
cache_examples=True,
)
gr.HTML(
"""
<div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated
Audio</p> <p>1. Try to use more adjectives to describe your sound. For example: "A man is speaking
clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM
understands what you want.</p> <p>2. Try to use different random seeds, which can affect the generation
quality significantly sometimes.</p> <p>3. It's better to use general terms like 'man' or 'woman'
instead of specific names for individuals or abstract objects that humans may not be familiar with,
such as 'mummy'.</p> <p>4. Using a negative prompt to not guide the diffusion process can improve the
audio quality significantly. Try using negative prompts like 'low quality'.</p> </div>
"""
)
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>,
<a href="https://freesound.org/">Freesound</a> and <a
href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo
based on the <a
href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK
copyright exception</a> of data for academic research. </p>
</div>
"""
)
# <p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p>
iface.queue(max_size=10).launch(debug=True)
|