File size: 10,846 Bytes
41ceddd
33d62f7
83dc4c8
541c07d
c55c219
958907e
41ceddd
39711bd
c55c219
 
 
 
 
 
 
 
41ceddd
c55c219
 
 
 
 
 
 
 
83dc4c8
39711bd
83dc4c8
c2362ff
39711bd
4e9d8a1
541c07d
f45148f
bdab1da
858c11b
 
 
 
 
 
 
 
 
4eab478
c2362ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eab478
858c11b
 
 
 
 
 
 
 
 
 
 
 
8f019f2
c2362ff
858c11b
 
 
 
 
 
 
c55c219
27e435d
 
 
 
 
 
858c11b
 
 
c2362ff
c55c219
4e9d8a1
c55c219
 
 
 
858c11b
c2362ff
 
f45148f
 
 
 
 
 
 
4e9d8a1
858c11b
 
f45148f
 
858c11b
 
993e22c
858c11b
993e22c
 
 
858c11b
 
541c07d
 
 
 
 
 
 
 
 
db19271
541c07d
f45148f
83dc4c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import numpy as np
from audioldm import text_to_audio, build_model
from share_btn import community_icon_html, loading_icon_html, share_js

model_id="haoheliu/AudioLDM-S-Full"

audioldm = build_model()
# audioldm=None

# def predict(input, history=[]):
#     # tokenize the new input sentence
#     new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

#     # append the new user input tokens to the chat history
#     bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

#     # generate a response 
#     history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

#     # convert the tokens to text, and then split the responses into lines
#     response = tokenizer.decode(history[0]).split("<|endoftext|>")
#     response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
#     return response, history
  
def text2audio(text, duration, guidance_scale, random_seed, n_candidates):
    # print(text, length, guidance_scale)
    waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples]
    waveform = [gr.make_waveform((16000, wave[0])) for wave in waveform]
    # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
    if(len(waveform) == 1):
      waveform = waveform[0]
    return waveform # ,gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

# iface = gr.Interface(fn=text2audio, inputs=[
#         gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
#         gr.Slider(2.5, 10, value=5, step=2.5),
#         gr.Slider(0, 5, value=2.5, step=0.5),
#         gr.Number(value=42)
#     ], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")],
#                 allow_flagging="never"
#                      )
# iface.launch(share=True)

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""
iface = gr.Blocks(css=css)

with iface:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                <a href="https://arxiv.org/abs/2301.12503">[Paper]</a>  <a href="https://audioldm.github.io/">[Project page]</a>
              </p>
            </div>
        """
    )  
    gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
    with gr.Group():
        with gr.Box():
            ############# Input
            textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1, label="Input your text here. Please ensure it is descriptive and of moderate length.")

            with gr.Accordion("Click to modify detailed configurations", open=False):
              seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.")
              duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
              guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)")
              n_candidates = gr.Slider(1, 5, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation")
            ############# Output
            # outputs=gr.Audio(label="Output", type="numpy")
            outputs=gr.Video(label="Output")
            
            # with gr.Group(elem_id="container-advanced-btns"):
            #   # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
            #   with gr.Group(elem_id="share-btn-container"):
            #     community_icon = gr.HTML(community_icon_html, visible=False)
            #     loading_icon = gr.HTML(loading_icon_html, visible=False)
            #     share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
            # outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
            
            btn = gr.Button("Submit").style(full_width=True)
        btn.click(text2audio, inputs=[textbox, duration, guidance_scale, seed, n_candidates], outputs=[outputs])  # , share_button, community_icon, loading_icon
        # share_button.click(None, [], [], _js=share_js)
        gr.HTML('''
        <div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
                    <p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM" style="text-decoration: underline;" target="_blank"> Github repo</a>
                    </p>
                    <br>
                    <p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a></p>
                    <br>
        </div>
        ''')
        
        with gr.Accordion("Additional information", open=False):
            gr.HTML(
            """
                <div class="acknowledgments">
                    <p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p>
                            </div>
                        """
                      )
# <p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p>
            
iface.queue(concurrency_count = 3)
iface.launch(debug=True)
# iface.launch(debug=True, share=True)