haodongli's picture
init
916b126
raw
history blame
6.26 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh, SH2RGB
from utils.graphics_utils import fov2focal
import random
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, black_video = False,
override_color = None, sh_deg_aug_ratio = 0.1, bg_aug_ratio = 0.3, shs_aug_ratio=1.0, scale_aug_ratio=1.0, test = False):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
try:
screenspace_points.retain_grad()
except:
pass
if black_video:
bg_color = torch.zeros_like(bg_color)
#Aug
if random.random() < sh_deg_aug_ratio and not test:
act_SH = 0
else:
act_SH = pc.active_sh_degree
if random.random() < bg_aug_ratio and not test:
if random.random() < 0.5:
bg_color = torch.rand_like(bg_color)
else:
bg_color = torch.zeros_like(bg_color)
# bg_color = torch.zeros_like(bg_color)
#bg_color = torch.zeros_like(bg_color)
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
try:
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=act_SH,
campos=viewpoint_camera.camera_center,
prefiltered=False
)
except TypeError as e:
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=act_SH,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=False
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if colors_precomp is None:
if pipe.convert_SHs_python:
raw_rgb = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2).squeeze()[:,:3]
rgb = torch.sigmoid(raw_rgb)
colors_precomp = rgb
else:
shs = pc.get_features
else:
colors_precomp = override_color
if random.random() < shs_aug_ratio and not test:
variance = (0.2 ** 0.5) * shs
shs = shs + (torch.randn_like(shs) * variance)
# add noise to scales
if random.random() < scale_aug_ratio and not test:
variance = (0.2 ** 0.5) * scales / 4
scales = torch.clamp(scales + (torch.randn_like(scales) * variance), 0.0)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii, depth_alpha = rasterizer(
means3D = means3D,
means2D = means2D,
shs = shs,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales,
rotations = rotations,
cov3D_precomp = cov3D_precomp)
depth, alpha = torch.chunk(depth_alpha, 2)
# bg_train = pc.get_background
# rendered_image = bg_train*alpha.repeat(3,1,1) + rendered_image
# focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2)) #torch.tan(torch.tensor(viewpoint_camera.FoVx) / 2) * (2. / 2
# disparity = focal / (depth + 1e-9)
# max_disp = torch.max(disparity)
# min_disp = torch.min(disparity[disparity > 0])
# norm_disparity = (disparity - min_disp) / (max_disp - min_disp)
# # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# # They will be excluded from value updates used in the splitting criteria.
# return {"render": rendered_image,
# "depth": norm_disparity,
focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2))
disp = focal / (depth + (alpha * 10) + 1e-5)
try:
min_d = disp[alpha <= 0.1].min()
except Exception:
min_d = disp.min()
disp = torch.clamp((disp - min_d) / (disp.max() - min_d), 0.0, 1.0)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {"render": rendered_image,
"depth": disp,
"alpha": alpha,
"viewspace_points": screenspace_points,
"visibility_filter" : radii > 0,
"radii": radii,
"scales": scales}