Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import torch | |
import math | |
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer | |
from scene.gaussian_model import GaussianModel | |
from utils.sh_utils import eval_sh, SH2RGB | |
from utils.graphics_utils import fov2focal | |
import random | |
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, black_video = False, | |
override_color = None, sh_deg_aug_ratio = 0.1, bg_aug_ratio = 0.3, shs_aug_ratio=1.0, scale_aug_ratio=1.0, test = False): | |
""" | |
Render the scene. | |
Background tensor (bg_color) must be on GPU! | |
""" | |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
if black_video: | |
bg_color = torch.zeros_like(bg_color) | |
#Aug | |
if random.random() < sh_deg_aug_ratio and not test: | |
act_SH = 0 | |
else: | |
act_SH = pc.active_sh_degree | |
if random.random() < bg_aug_ratio and not test: | |
if random.random() < 0.5: | |
bg_color = torch.rand_like(bg_color) | |
else: | |
bg_color = torch.zeros_like(bg_color) | |
# bg_color = torch.zeros_like(bg_color) | |
#bg_color = torch.zeros_like(bg_color) | |
# Set up rasterization configuration | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
try: | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=act_SH, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False | |
) | |
except TypeError as e: | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=act_SH, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
debug=False | |
) | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
means3D = pc.get_xyz | |
means2D = screenspace_points | |
opacity = pc.get_opacity | |
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# scaling / rotation by the rasterizer. | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
if pipe.compute_cov3D_python: | |
cov3D_precomp = pc.get_covariance(scaling_modifier) | |
else: | |
scales = pc.get_scaling | |
rotations = pc.get_rotation | |
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
shs = None | |
colors_precomp = None | |
if colors_precomp is None: | |
if pipe.convert_SHs_python: | |
raw_rgb = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2).squeeze()[:,:3] | |
rgb = torch.sigmoid(raw_rgb) | |
colors_precomp = rgb | |
else: | |
shs = pc.get_features | |
else: | |
colors_precomp = override_color | |
if random.random() < shs_aug_ratio and not test: | |
variance = (0.2 ** 0.5) * shs | |
shs = shs + (torch.randn_like(shs) * variance) | |
# add noise to scales | |
if random.random() < scale_aug_ratio and not test: | |
variance = (0.2 ** 0.5) * scales / 4 | |
scales = torch.clamp(scales + (torch.randn_like(scales) * variance), 0.0) | |
# Rasterize visible Gaussians to image, obtain their radii (on screen). | |
rendered_image, radii, depth_alpha = rasterizer( | |
means3D = means3D, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
opacities = opacity, | |
scales = scales, | |
rotations = rotations, | |
cov3D_precomp = cov3D_precomp) | |
depth, alpha = torch.chunk(depth_alpha, 2) | |
# bg_train = pc.get_background | |
# rendered_image = bg_train*alpha.repeat(3,1,1) + rendered_image | |
# focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2)) #torch.tan(torch.tensor(viewpoint_camera.FoVx) / 2) * (2. / 2 | |
# disparity = focal / (depth + 1e-9) | |
# max_disp = torch.max(disparity) | |
# min_disp = torch.min(disparity[disparity > 0]) | |
# norm_disparity = (disparity - min_disp) / (max_disp - min_disp) | |
# # Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# # They will be excluded from value updates used in the splitting criteria. | |
# return {"render": rendered_image, | |
# "depth": norm_disparity, | |
focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2)) | |
disp = focal / (depth + (alpha * 10) + 1e-5) | |
try: | |
min_d = disp[alpha <= 0.1].min() | |
except Exception: | |
min_d = disp.min() | |
disp = torch.clamp((disp - min_d) / (disp.max() - min_d), 0.0, 1.0) | |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# They will be excluded from value updates used in the splitting criteria. | |
return {"render": rendered_image, | |
"depth": disp, | |
"alpha": alpha, | |
"viewspace_points": screenspace_points, | |
"visibility_filter" : radii > 0, | |
"radii": radii, | |
"scales": scales} | |