LucidDreamer / scene /cameras.py
haodongli's picture
init
916b126
raw
history blame
5.37 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from torch import nn
import numpy as np
from utils.graphics_utils import getWorld2View2, getProjectionMatrix, fov2focal
def get_rays_torch(focal, c2w, H=64,W=64):
"""Computes rays using a General Pinhole Camera Model
Assumes self.h, self.w, self.focal, and self.cam_to_world exist
"""
x, y = torch.meshgrid(
torch.arange(W), # X-Axis (columns)
torch.arange(H), # Y-Axis (rows)
indexing='xy')
camera_directions = torch.stack(
[(x - W * 0.5 + 0.5) / focal,
-(y - H * 0.5 + 0.5) / focal,
-torch.ones_like(x)],
dim=-1).to(c2w)
# Rotate ray directions from camera frame to the world frame
directions = ((camera_directions[ None,..., None, :] * c2w[None,None, None, :3, :3]).sum(axis=-1)) # Translate camera frame's origin to the world frame
origins = torch.broadcast_to(c2w[ None,None, None, :3, -1], directions.shape)
viewdirs = directions / torch.linalg.norm(directions, axis=-1, keepdims=True)
return torch.cat((origins,viewdirs),dim=-1)
class Camera(nn.Module):
def __init__(self, colmap_id, R, T, FoVx, FoVy, image, gt_alpha_mask,
image_name, uid,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
):
super(Camera, self).__init__()
self.uid = uid
self.colmap_id = colmap_id
self.R = R
self.T = T
self.FoVx = FoVx
self.FoVy = FoVy
self.image_name = image_name
try:
self.data_device = torch.device(data_device)
except Exception as e:
print(e)
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
self.data_device = torch.device("cuda")
self.original_image = image.clamp(0.0, 1.0).to(self.data_device)
self.image_width = self.original_image.shape[2]
self.image_height = self.original_image.shape[1]
if gt_alpha_mask is not None:
self.original_image *= gt_alpha_mask.to(self.data_device)
else:
self.original_image *= torch.ones((1, self.image_height, self.image_width), device=self.data_device)
self.zfar = 100.0
self.znear = 0.01
self.trans = trans
self.scale = scale
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda()
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
class RCamera(nn.Module):
def __init__(self, colmap_id, R, T, FoVx, FoVy, uid, delta_polar, delta_azimuth, delta_radius, opt,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda", SSAA=False
):
super(RCamera, self).__init__()
self.uid = uid
self.colmap_id = colmap_id
self.R = R
self.T = T
self.FoVx = FoVx
self.FoVy = FoVy
self.delta_polar = delta_polar
self.delta_azimuth = delta_azimuth
self.delta_radius = delta_radius
try:
self.data_device = torch.device(data_device)
except Exception as e:
print(e)
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
self.data_device = torch.device("cuda")
self.zfar = 100.0
self.znear = 0.01
if SSAA:
ssaa = opt.SSAA
else:
ssaa = 1
self.image_width = opt.image_w * ssaa
self.image_height = opt.image_h * ssaa
self.trans = trans
self.scale = scale
RT = torch.tensor(getWorld2View2(R, T, trans, scale))
self.world_view_transform = RT.transpose(0, 1).cuda()
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
# self.rays = get_rays_torch(fov2focal(FoVx, 64), RT).cuda()
self.rays = get_rays_torch(fov2focal(FoVx, self.image_width//8), RT, H=self.image_height//8, W=self.image_width//8).cuda()
class MiniCam:
def __init__(self, width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform):
self.image_width = width
self.image_height = height
self.FoVy = fovy
self.FoVx = fovx
self.znear = znear
self.zfar = zfar
self.world_view_transform = world_view_transform
self.full_proj_transform = full_proj_transform
view_inv = torch.inverse(self.world_view_transform)
self.camera_center = view_inv[3][:3]