Spaces:
Runtime error
Runtime error
File size: 5,365 Bytes
916b126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from torch import nn
import numpy as np
from utils.graphics_utils import getWorld2View2, getProjectionMatrix, fov2focal
def get_rays_torch(focal, c2w, H=64,W=64):
"""Computes rays using a General Pinhole Camera Model
Assumes self.h, self.w, self.focal, and self.cam_to_world exist
"""
x, y = torch.meshgrid(
torch.arange(W), # X-Axis (columns)
torch.arange(H), # Y-Axis (rows)
indexing='xy')
camera_directions = torch.stack(
[(x - W * 0.5 + 0.5) / focal,
-(y - H * 0.5 + 0.5) / focal,
-torch.ones_like(x)],
dim=-1).to(c2w)
# Rotate ray directions from camera frame to the world frame
directions = ((camera_directions[ None,..., None, :] * c2w[None,None, None, :3, :3]).sum(axis=-1)) # Translate camera frame's origin to the world frame
origins = torch.broadcast_to(c2w[ None,None, None, :3, -1], directions.shape)
viewdirs = directions / torch.linalg.norm(directions, axis=-1, keepdims=True)
return torch.cat((origins,viewdirs),dim=-1)
class Camera(nn.Module):
def __init__(self, colmap_id, R, T, FoVx, FoVy, image, gt_alpha_mask,
image_name, uid,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
):
super(Camera, self).__init__()
self.uid = uid
self.colmap_id = colmap_id
self.R = R
self.T = T
self.FoVx = FoVx
self.FoVy = FoVy
self.image_name = image_name
try:
self.data_device = torch.device(data_device)
except Exception as e:
print(e)
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
self.data_device = torch.device("cuda")
self.original_image = image.clamp(0.0, 1.0).to(self.data_device)
self.image_width = self.original_image.shape[2]
self.image_height = self.original_image.shape[1]
if gt_alpha_mask is not None:
self.original_image *= gt_alpha_mask.to(self.data_device)
else:
self.original_image *= torch.ones((1, self.image_height, self.image_width), device=self.data_device)
self.zfar = 100.0
self.znear = 0.01
self.trans = trans
self.scale = scale
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda()
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
class RCamera(nn.Module):
def __init__(self, colmap_id, R, T, FoVx, FoVy, uid, delta_polar, delta_azimuth, delta_radius, opt,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda", SSAA=False
):
super(RCamera, self).__init__()
self.uid = uid
self.colmap_id = colmap_id
self.R = R
self.T = T
self.FoVx = FoVx
self.FoVy = FoVy
self.delta_polar = delta_polar
self.delta_azimuth = delta_azimuth
self.delta_radius = delta_radius
try:
self.data_device = torch.device(data_device)
except Exception as e:
print(e)
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
self.data_device = torch.device("cuda")
self.zfar = 100.0
self.znear = 0.01
if SSAA:
ssaa = opt.SSAA
else:
ssaa = 1
self.image_width = opt.image_w * ssaa
self.image_height = opt.image_h * ssaa
self.trans = trans
self.scale = scale
RT = torch.tensor(getWorld2View2(R, T, trans, scale))
self.world_view_transform = RT.transpose(0, 1).cuda()
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
# self.rays = get_rays_torch(fov2focal(FoVx, 64), RT).cuda()
self.rays = get_rays_torch(fov2focal(FoVx, self.image_width//8), RT, H=self.image_height//8, W=self.image_width//8).cuda()
class MiniCam:
def __init__(self, width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform):
self.image_width = width
self.image_height = height
self.FoVy = fovy
self.FoVx = fovx
self.znear = znear
self.zfar = zfar
self.world_view_transform = world_view_transform
self.full_proj_transform = full_proj_transform
view_inv = torch.inverse(self.world_view_transform)
self.camera_center = view_inv[3][:3]
|