File size: 4,514 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import os
import random
import json
from utils.system_utils import searchForMaxIteration
from scene.dataset_readers import sceneLoadTypeCallbacks,GenerateRandomCameras,GeneratePurnCameras,GenerateCircleCameras
from scene.gaussian_model import GaussianModel
from arguments import ModelParams, GenerateCamParams
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON, cameraList_from_RcamInfos

class Scene:

    gaussians : GaussianModel

    def __init__(self, args : ModelParams, pose_args : GenerateCamParams, gaussians : GaussianModel, load_iteration=None, shuffle=False, resolution_scales=[1.0]):
        """b
        :param path: Path to colmap scene main folder.
        """
        self.model_path = args._model_path
        self.pretrained_model_path = args.pretrained_model_path
        self.loaded_iter = None
        self.gaussians = gaussians
        self.resolution_scales = resolution_scales
        self.pose_args = pose_args
        self.args = args
        if load_iteration:
            if load_iteration == -1:
                self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
            else:
                self.loaded_iter = load_iteration
            print("Loading trained model at iteration {}".format(self.loaded_iter))

        self.test_cameras = {}
        scene_info = sceneLoadTypeCallbacks["RandomCam"](self.model_path ,pose_args)

        json_cams = []
        camlist = []
        if scene_info.test_cameras:
            camlist.extend(scene_info.test_cameras)
        for id, cam in enumerate(camlist):
            json_cams.append(camera_to_JSON(id, cam))
        with open(os.path.join(self.model_path, "cameras.json"), 'w') as file:
            json.dump(json_cams, file)

        if shuffle:
            random.shuffle(scene_info.test_cameras)  # Multi-res consistent random shuffling
        self.cameras_extent = pose_args.default_radius #    scene_info.nerf_normalization["radius"]
        for resolution_scale in resolution_scales:
            self.test_cameras[resolution_scale] = cameraList_from_RcamInfos(scene_info.test_cameras, resolution_scale, self.pose_args)
        if self.loaded_iter:
            self.gaussians.load_ply(os.path.join(self.model_path,
                                                           "point_cloud",
                                                           "iteration_" + str(self.loaded_iter),
                                                           "point_cloud.ply"))
        elif self.pretrained_model_path is not None:
            self.gaussians.load_ply(self.pretrained_model_path)
        else:
            self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)

    def save(self, iteration):
        point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
        self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"))

    def getRandTrainCameras(self, scale=1.0):
        rand_train_cameras = GenerateRandomCameras(self.pose_args, self.args.batch, SSAA=True)
        train_cameras = {}
        for resolution_scale in self.resolution_scales:
            train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args, SSAA=True)        
        return train_cameras[scale]


    def getPurnTrainCameras(self, scale=1.0):
        rand_train_cameras = GeneratePurnCameras(self.pose_args)
        train_cameras = {}
        for resolution_scale in self.resolution_scales:
            train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args)        
        return train_cameras[scale]


    def getTestCameras(self, scale=1.0):
        return self.test_cameras[scale]

    def getCircleVideoCameras(self, scale=1.0,batch_size=120, render45 = True):
        video_circle_cameras = GenerateCircleCameras(self.pose_args,batch_size,render45)
        video_cameras = {}
        for resolution_scale in self.resolution_scales:
            video_cameras[resolution_scale] = cameraList_from_RcamInfos(video_circle_cameras, resolution_scale, self.pose_args)        
        return video_cameras[scale]