Spaces:
Runtime error
Runtime error
File size: 25,112 Bytes
916b126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
from audioop import mul
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import StableDiffusionPipeline, DiffusionPipeline, DDPMScheduler, DDIMScheduler, EulerDiscreteScheduler, \
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ControlNetModel, \
DDIMInverseScheduler, UNet2DConditionModel
from diffusers.utils.import_utils import is_xformers_available
from os.path import isfile
from pathlib import Path
import os
import random
import torchvision.transforms as T
# suppress partial model loading warning
logging.set_verbosity_error()
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.utils import save_image
from torch.cuda.amp import custom_bwd, custom_fwd
from .perpneg_utils import weighted_perpendicular_aggregator
from .sd_step import *
def rgb2sat(img, T=None):
max_ = torch.max(img, dim=1, keepdim=True).values + 1e-5
min_ = torch.min(img, dim=1, keepdim=True).values
sat = (max_ - min_) / max_
if T is not None:
sat = (1 - T) * sat
return sat
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
gt_grad, = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
class StableDiffusion(nn.Module):
def __init__(self, device, fp16, vram_O, t_range=[0.02, 0.98], max_t_range=0.98, num_train_timesteps=None,
ddim_inv=False, use_control_net=False, textual_inversion_path = None,
LoRA_path = None, guidance_opt=None):
super().__init__()
self.device = device
self.precision_t = torch.float16 if fp16 else torch.float32
print(f'[INFO] loading stable diffusion...')
model_key = guidance_opt.model_key
assert model_key is not None
is_safe_tensor = guidance_opt.is_safe_tensor
base_model_key = "stabilityai/stable-diffusion-v1-5" if guidance_opt.base_model_key is None else guidance_opt.base_model_key # for finetuned model only
if is_safe_tensor:
pipe = StableDiffusionPipeline.from_single_file(model_key, use_safetensors=True, torch_dtype=self.precision_t, load_safety_checker=False)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=self.precision_t)
self.ism = not guidance_opt.sds
self.scheduler = DDIMScheduler.from_pretrained(model_key if not is_safe_tensor else base_model_key, subfolder="scheduler", torch_dtype=self.precision_t)
self.sche_func = ddim_step
if use_control_net:
controlnet_model_key = guidance_opt.controlnet_model_key
self.controlnet_depth = ControlNetModel.from_pretrained(controlnet_model_key,torch_dtype=self.precision_t).to(device)
if vram_O:
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
pipe.unet.to(memory_format=torch.channels_last)
pipe.enable_attention_slicing(1)
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(self.device)
if textual_inversion_path is not None:
pipe.load_textual_inversion(textual_inversion_path)
print("load textual inversion in:.{}".format(textual_inversion_path))
if LoRA_path is not None:
from lora_diffusion import tune_lora_scale, patch_pipe
print("load lora in:.{}".format(LoRA_path))
patch_pipe(
pipe,
LoRA_path,
patch_text=True,
patch_ti=True,
patch_unet=True,
)
tune_lora_scale(pipe.unet, 1.00)
tune_lora_scale(pipe.text_encoder, 1.00)
self.pipe = pipe
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.num_train_timesteps = num_train_timesteps if num_train_timesteps is not None else self.scheduler.config.num_train_timesteps
self.scheduler.set_timesteps(self.num_train_timesteps, device=device)
self.timesteps = torch.flip(self.scheduler.timesteps, dims=(0, ))
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.warmup_step = int(self.num_train_timesteps*(max_t_range-t_range[1]))
self.noise_temp = None
self.noise_gen = torch.Generator(self.device)
self.noise_gen.manual_seed(guidance_opt.noise_seed)
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
self.rgb_latent_factors = torch.tensor([
# R G B
[ 0.298, 0.207, 0.208],
[ 0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473]
], device=self.device)
print(f'[INFO] loaded stable diffusion!')
def augmentation(self, *tensors):
augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
])
channels = [ten.shape[1] for ten in tensors]
tensors_concat = torch.concat(tensors, dim=1)
tensors_concat = augs(tensors_concat)
results = []
cur_c = 0
for i in range(len(channels)):
results.append(tensors_concat[:, cur_c:cur_c + channels[i], ...])
cur_c += channels[i]
return (ten for ten in results)
def add_noise_with_cfg(self, latents, noise,
ind_t, ind_prev_t,
text_embeddings=None, cfg=1.0,
delta_t=1, inv_steps=1,
is_noisy_latent=False,
eta=0.0):
text_embeddings = text_embeddings.to(self.precision_t)
if cfg <= 1.0:
uncond_text_embedding = text_embeddings.reshape(2, -1, text_embeddings.shape[-2], text_embeddings.shape[-1])[1]
unet = self.unet
if is_noisy_latent:
prev_noisy_lat = latents
else:
prev_noisy_lat = self.scheduler.add_noise(latents, noise, self.timesteps[ind_prev_t])
cur_ind_t = ind_prev_t
cur_noisy_lat = prev_noisy_lat
pred_scores = []
for i in range(inv_steps):
# pred noise
cur_noisy_lat_ = self.scheduler.scale_model_input(cur_noisy_lat, self.timesteps[cur_ind_t]).to(self.precision_t)
if cfg > 1.0:
latent_model_input = torch.cat([cur_noisy_lat_, cur_noisy_lat_])
timestep_model_input = self.timesteps[cur_ind_t].reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)
unet_output = unet(latent_model_input, timestep_model_input,
encoder_hidden_states=text_embeddings).sample
uncond, cond = torch.chunk(unet_output, chunks=2)
unet_output = cond + cfg * (uncond - cond) # reverse cfg to enhance the distillation
else:
timestep_model_input = self.timesteps[cur_ind_t].reshape(1, 1).repeat(cur_noisy_lat_.shape[0], 1).reshape(-1)
unet_output = unet(cur_noisy_lat_, timestep_model_input,
encoder_hidden_states=uncond_text_embedding).sample
pred_scores.append((cur_ind_t, unet_output))
next_ind_t = min(cur_ind_t + delta_t, ind_t)
cur_t, next_t = self.timesteps[cur_ind_t], self.timesteps[next_ind_t]
delta_t_ = next_t-cur_t if isinstance(self.scheduler, DDIMScheduler) else next_ind_t-cur_ind_t
cur_noisy_lat = self.sche_func(self.scheduler, unet_output, cur_t, cur_noisy_lat, -delta_t_, eta).prev_sample
cur_ind_t = next_ind_t
del unet_output
torch.cuda.empty_cache()
if cur_ind_t == ind_t:
break
return prev_noisy_lat, cur_noisy_lat, pred_scores[::-1]
@torch.no_grad()
def get_text_embeds(self, prompt, resolution=(512, 512)):
inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
return embeddings
def train_step_perpneg(self, text_embeddings, pred_rgb, pred_depth=None, pred_alpha=None,
grad_scale=1,use_control_net=False,
save_folder:Path=None, iteration=0, warm_up_rate = 0, weights = 0,
resolution=(512, 512), guidance_opt=None,as_latent=False, embedding_inverse = None):
# flip aug
pred_rgb, pred_depth, pred_alpha = self.augmentation(pred_rgb, pred_depth, pred_alpha)
B = pred_rgb.shape[0]
K = text_embeddings.shape[0] - 1
if as_latent:
latents,_ = self.encode_imgs(pred_depth.repeat(1,3,1,1).to(self.precision_t))
else:
latents,_ = self.encode_imgs(pred_rgb.to(self.precision_t))
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
weights = weights.reshape(-1)
noise = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)
inverse_text_embeddings = embedding_inverse.unsqueeze(1).repeat(1, B, 1, 1).reshape(-1, embedding_inverse.shape[-2], embedding_inverse.shape[-1])
text_embeddings = text_embeddings.reshape(-1, text_embeddings.shape[-2], text_embeddings.shape[-1]) # make it k+1, c * t, ...
if guidance_opt.annealing_intervals:
current_delta_t = int(guidance_opt.delta_t + np.ceil((warm_up_rate)*(guidance_opt.delta_t_start - guidance_opt.delta_t)))
else:
current_delta_t = guidance_opt.delta_t
ind_t = torch.randint(self.min_step, self.max_step + int(self.warmup_step*warm_up_rate), (1, ), dtype=torch.long, generator=self.noise_gen, device=self.device)[0]
ind_prev_t = max(ind_t - current_delta_t, torch.ones_like(ind_t) * 0)
t = self.timesteps[ind_t]
prev_t = self.timesteps[ind_prev_t]
with torch.no_grad():
# step unroll via ddim inversion
if not self.ism:
prev_latents_noisy = self.scheduler.add_noise(latents, noise, prev_t)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
target = noise
else:
# Step 1: sample x_s with larger steps
xs_delta_t = guidance_opt.xs_delta_t if guidance_opt.xs_delta_t is not None else current_delta_t
xs_inv_steps = guidance_opt.xs_inv_steps if guidance_opt.xs_inv_steps is not None else int(np.ceil(ind_prev_t / xs_delta_t))
starting_ind = max(ind_prev_t - xs_delta_t * xs_inv_steps, torch.ones_like(ind_t) * 0)
_, prev_latents_noisy, pred_scores_xs = self.add_noise_with_cfg(latents, noise, ind_prev_t, starting_ind, inverse_text_embeddings,
guidance_opt.denoise_guidance_scale, xs_delta_t, xs_inv_steps, eta=guidance_opt.xs_eta)
# Step 2: sample x_t
_, latents_noisy, pred_scores_xt = self.add_noise_with_cfg(prev_latents_noisy, noise, ind_t, ind_prev_t, inverse_text_embeddings,
guidance_opt.denoise_guidance_scale, current_delta_t, 1, is_noisy_latent=True)
pred_scores = pred_scores_xt + pred_scores_xs
target = pred_scores[0][1]
with torch.no_grad():
latent_model_input = latents_noisy[None, :, ...].repeat(1 + K, 1, 1, 1, 1).reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
tt = t.reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, tt[0])
if use_control_net:
pred_depth_input = pred_depth_input[None, :, ...].repeat(1 + K, 1, 3, 1, 1).reshape(-1, 3, 512, 512).half()
down_block_res_samples, mid_block_res_sample = self.controlnet_depth(
latent_model_input,
tt,
encoder_hidden_states=text_embeddings,
controlnet_cond=pred_depth_input,
return_dict=False,
)
unet_output = self.unet(latent_model_input, tt, encoder_hidden_states=text_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample).sample
else:
unet_output = self.unet(latent_model_input.to(self.precision_t), tt.to(self.precision_t), encoder_hidden_states=text_embeddings.to(self.precision_t)).sample
unet_output = unet_output.reshape(1 + K, -1, 4, resolution[0] // 8, resolution[1] // 8, )
noise_pred_uncond, noise_pred_text = unet_output[:1].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, ), unet_output[1:].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
delta_noise_preds = noise_pred_text - noise_pred_uncond.repeat(K, 1, 1, 1)
delta_DSD = weighted_perpendicular_aggregator(delta_noise_preds,\
weights,\
B)
pred_noise = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD
w = lambda alphas: (((1 - alphas) / alphas) ** 0.5)
grad = w(self.alphas[t]) * (pred_noise - target)
grad = torch.nan_to_num(grad_scale * grad)
loss = SpecifyGradient.apply(latents, grad)
if iteration % guidance_opt.vis_interval == 0:
noise_pred_post = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD
lat2rgb = lambda x: torch.clip((x.permute(0,2,3,1) @ self.rgb_latent_factors.to(x.dtype)).permute(0,3,1,2), 0., 1.)
save_path_iter = os.path.join(save_folder,"iter_{}_step_{}.jpg".format(iteration,prev_t.item()))
with torch.no_grad():
pred_x0_latent_sp = pred_original(self.scheduler, noise_pred_uncond, prev_t, prev_latents_noisy)
pred_x0_latent_pos = pred_original(self.scheduler, noise_pred_post, prev_t, prev_latents_noisy)
pred_x0_pos = self.decode_latents(pred_x0_latent_pos.type(self.precision_t))
pred_x0_sp = self.decode_latents(pred_x0_latent_sp.type(self.precision_t))
grad_abs = torch.abs(grad.detach())
norm_grad = F.interpolate((grad_abs / grad_abs.max()).mean(dim=1,keepdim=True), (resolution[0], resolution[1]), mode='bilinear', align_corners=False).repeat(1,3,1,1)
latents_rgb = F.interpolate(lat2rgb(latents), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
latents_sp_rgb = F.interpolate(lat2rgb(pred_x0_latent_sp), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
viz_images = torch.cat([pred_rgb,
pred_depth.repeat(1, 3, 1, 1),
pred_alpha.repeat(1, 3, 1, 1),
rgb2sat(pred_rgb, pred_alpha).repeat(1, 3, 1, 1),
latents_rgb, latents_sp_rgb,
norm_grad,
pred_x0_sp, pred_x0_pos],dim=0)
save_image(viz_images, save_path_iter)
return loss
def train_step(self, text_embeddings, pred_rgb, pred_depth=None, pred_alpha=None,
grad_scale=1,use_control_net=False,
save_folder:Path=None, iteration=0, warm_up_rate = 0,
resolution=(512, 512), guidance_opt=None,as_latent=False, embedding_inverse = None):
pred_rgb, pred_depth, pred_alpha = self.augmentation(pred_rgb, pred_depth, pred_alpha)
B = pred_rgb.shape[0]
K = text_embeddings.shape[0] - 1
if as_latent:
latents,_ = self.encode_imgs(pred_depth.repeat(1,3,1,1).to(self.precision_t))
else:
latents,_ = self.encode_imgs(pred_rgb.to(self.precision_t))
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
if self.noise_temp is None:
self.noise_temp = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)
if guidance_opt.fix_noise:
noise = self.noise_temp
else:
noise = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)
text_embeddings = text_embeddings[:, :, ...]
text_embeddings = text_embeddings.reshape(-1, text_embeddings.shape[-2], text_embeddings.shape[-1]) # make it k+1, c * t, ...
inverse_text_embeddings = embedding_inverse.unsqueeze(1).repeat(1, B, 1, 1).reshape(-1, embedding_inverse.shape[-2], embedding_inverse.shape[-1])
if guidance_opt.annealing_intervals:
current_delta_t = int(guidance_opt.delta_t + (warm_up_rate)*(guidance_opt.delta_t_start - guidance_opt.delta_t))
else:
current_delta_t = guidance_opt.delta_t
ind_t = torch.randint(self.min_step, self.max_step + int(self.warmup_step*warm_up_rate), (1, ), dtype=torch.long, generator=self.noise_gen, device=self.device)[0]
ind_prev_t = max(ind_t - current_delta_t, torch.ones_like(ind_t) * 0)
t = self.timesteps[ind_t]
prev_t = self.timesteps[ind_prev_t]
with torch.no_grad():
# step unroll via ddim inversion
if not self.ism:
prev_latents_noisy = self.scheduler.add_noise(latents, noise, prev_t)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
target = noise
else:
# Step 1: sample x_s with larger steps
xs_delta_t = guidance_opt.xs_delta_t if guidance_opt.xs_delta_t is not None else current_delta_t
xs_inv_steps = guidance_opt.xs_inv_steps if guidance_opt.xs_inv_steps is not None else int(np.ceil(ind_prev_t / xs_delta_t))
starting_ind = max(ind_prev_t - xs_delta_t * xs_inv_steps, torch.ones_like(ind_t) * 0)
_, prev_latents_noisy, pred_scores_xs = self.add_noise_with_cfg(latents, noise, ind_prev_t, starting_ind, inverse_text_embeddings,
guidance_opt.denoise_guidance_scale, xs_delta_t, xs_inv_steps, eta=guidance_opt.xs_eta)
# Step 2: sample x_t
_, latents_noisy, pred_scores_xt = self.add_noise_with_cfg(prev_latents_noisy, noise, ind_t, ind_prev_t, inverse_text_embeddings,
guidance_opt.denoise_guidance_scale, current_delta_t, 1, is_noisy_latent=True)
pred_scores = pred_scores_xt + pred_scores_xs
target = pred_scores[0][1]
with torch.no_grad():
latent_model_input = latents_noisy[None, :, ...].repeat(2, 1, 1, 1, 1).reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
tt = t.reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, tt[0])
if use_control_net:
pred_depth_input = pred_depth_input[None, :, ...].repeat(1 + K, 1, 3, 1, 1).reshape(-1, 3, 512, 512).half()
down_block_res_samples, mid_block_res_sample = self.controlnet_depth(
latent_model_input,
tt,
encoder_hidden_states=text_embeddings,
controlnet_cond=pred_depth_input,
return_dict=False,
)
unet_output = self.unet(latent_model_input, tt, encoder_hidden_states=text_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample).sample
else:
unet_output = self.unet(latent_model_input.to(self.precision_t), tt.to(self.precision_t), encoder_hidden_states=text_embeddings.to(self.precision_t)).sample
unet_output = unet_output.reshape(2, -1, 4, resolution[0] // 8, resolution[1] // 8, )
noise_pred_uncond, noise_pred_text = unet_output[:1].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, ), unet_output[1:].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
delta_DSD = noise_pred_text - noise_pred_uncond
pred_noise = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD
w = lambda alphas: (((1 - alphas) / alphas) ** 0.5)
grad = w(self.alphas[t]) * (pred_noise - target)
grad = torch.nan_to_num(grad_scale * grad)
loss = SpecifyGradient.apply(latents, grad)
if iteration % guidance_opt.vis_interval == 0:
noise_pred_post = noise_pred_uncond + 7.5* delta_DSD
lat2rgb = lambda x: torch.clip((x.permute(0,2,3,1) @ self.rgb_latent_factors.to(x.dtype)).permute(0,3,1,2), 0., 1.)
save_path_iter = os.path.join(save_folder,"iter_{}_step_{}.jpg".format(iteration,prev_t.item()))
with torch.no_grad():
pred_x0_latent_sp = pred_original(self.scheduler, noise_pred_uncond, prev_t, prev_latents_noisy)
pred_x0_latent_pos = pred_original(self.scheduler, noise_pred_post, prev_t, prev_latents_noisy)
pred_x0_pos = self.decode_latents(pred_x0_latent_pos.type(self.precision_t))
pred_x0_sp = self.decode_latents(pred_x0_latent_sp.type(self.precision_t))
# pred_x0_uncond = pred_x0_sp[:1, ...]
grad_abs = torch.abs(grad.detach())
norm_grad = F.interpolate((grad_abs / grad_abs.max()).mean(dim=1,keepdim=True), (resolution[0], resolution[1]), mode='bilinear', align_corners=False).repeat(1,3,1,1)
latents_rgb = F.interpolate(lat2rgb(latents), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
latents_sp_rgb = F.interpolate(lat2rgb(pred_x0_latent_sp), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
viz_images = torch.cat([pred_rgb,
pred_depth.repeat(1, 3, 1, 1),
pred_alpha.repeat(1, 3, 1, 1),
rgb2sat(pred_rgb, pred_alpha).repeat(1, 3, 1, 1),
latents_rgb, latents_sp_rgb, norm_grad,
pred_x0_sp, pred_x0_pos],dim=0)
save_image(viz_images, save_path_iter)
return loss
def decode_latents(self, latents):
target_dtype = latents.dtype
latents = latents / self.vae.config.scaling_factor
imgs = self.vae.decode(latents.to(self.vae.dtype)).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs.to(target_dtype)
def encode_imgs(self, imgs):
target_dtype = imgs.dtype
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs.to(self.vae.dtype)).latent_dist
kl_divergence = posterior.kl()
latents = posterior.sample() * self.vae.config.scaling_factor
return latents.to(target_dtype), kl_divergence |