File size: 9,962 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Have SwinIR upsample
# Have BLIP auto caption
# Have CLIPSeg auto mask concept

from typing import List, Literal, Union, Optional, Tuple
import os
from PIL import Image, ImageFilter
import torch
import numpy as np
import fire
from tqdm import tqdm
import glob
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation


@torch.no_grad()
def swin_ir_sr(
    images: List[Image.Image],
    model_id: Literal[
        "caidas/swin2SR-classical-sr-x2-64", "caidas/swin2SR-classical-sr-x4-48"
    ] = "caidas/swin2SR-classical-sr-x2-64",
    target_size: Optional[Tuple[int, int]] = None,
    device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
    **kwargs,
) -> List[Image.Image]:
    """
    Upscales images using SwinIR. Returns a list of PIL images.
    """
    # So this is currently in main branch, so this can be used in the future I guess?
    from transformers import Swin2SRForImageSuperResolution, Swin2SRImageProcessor

    model = Swin2SRForImageSuperResolution.from_pretrained(
        model_id,
    ).to(device)
    processor = Swin2SRImageProcessor()

    out_images = []

    for image in tqdm(images):

        ori_w, ori_h = image.size
        if target_size is not None:
            if ori_w >= target_size[0] and ori_h >= target_size[1]:
                out_images.append(image)
                continue

        inputs = processor(image, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model(**inputs)

        output = (
            outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        )
        output = np.moveaxis(output, source=0, destination=-1)
        output = (output * 255.0).round().astype(np.uint8)
        output = Image.fromarray(output)

        out_images.append(output)

    return out_images


@torch.no_grad()
def clipseg_mask_generator(
    images: List[Image.Image],
    target_prompts: Union[List[str], str],
    model_id: Literal[
        "CIDAS/clipseg-rd64-refined", "CIDAS/clipseg-rd16"
    ] = "CIDAS/clipseg-rd64-refined",
    device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
    bias: float = 0.01,
    temp: float = 1.0,
    **kwargs,
) -> List[Image.Image]:
    """
    Returns a greyscale mask for each image, where the mask is the probability of the target prompt being present in the image
    """

    if isinstance(target_prompts, str):
        print(
            f'Warning: only one target prompt "{target_prompts}" was given, so it will be used for all images'
        )

        target_prompts = [target_prompts] * len(images)

    processor = CLIPSegProcessor.from_pretrained(model_id)
    model = CLIPSegForImageSegmentation.from_pretrained(model_id).to(device)

    masks = []

    for image, prompt in tqdm(zip(images, target_prompts)):

        original_size = image.size

        inputs = processor(
            text=[prompt, ""],
            images=[image] * 2,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        ).to(device)

        outputs = model(**inputs)

        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits / temp, dim=0)[0]
        probs = (probs + bias).clamp_(0, 1)
        probs = 255 * probs / probs.max()

        # make mask greyscale
        mask = Image.fromarray(probs.cpu().numpy()).convert("L")

        # resize mask to original size
        mask = mask.resize(original_size)

        masks.append(mask)

    return masks


@torch.no_grad()
def blip_captioning_dataset(
    images: List[Image.Image],
    text: Optional[str] = None,
    model_id: Literal[
        "Salesforce/blip-image-captioning-large",
        "Salesforce/blip-image-captioning-base",
    ] = "Salesforce/blip-image-captioning-large",
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
    **kwargs,
) -> List[str]:
    """
    Returns a list of captions for the given images
    """

    from transformers import BlipProcessor, BlipForConditionalGeneration

    processor = BlipProcessor.from_pretrained(model_id)
    model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
    captions = []

    for image in tqdm(images):
        inputs = processor(image, text=text, return_tensors="pt").to("cuda")
        out = model.generate(
            **inputs, max_length=150, do_sample=True, top_k=50, temperature=0.7
        )
        caption = processor.decode(out[0], skip_special_tokens=True)

        captions.append(caption)

    return captions


def face_mask_google_mediapipe(
    images: List[Image.Image], blur_amount: float = 80.0, bias: float = 0.05
) -> List[Image.Image]:
    """
    Returns a list of images with mask on the face parts.
    """
    import mediapipe as mp

    mp_face_detection = mp.solutions.face_detection

    face_detection = mp_face_detection.FaceDetection(
        model_selection=1, min_detection_confidence=0.5
    )

    masks = []
    for image in tqdm(images):

        image = np.array(image)

        results = face_detection.process(image)
        black_image = np.ones((image.shape[0], image.shape[1]), dtype=np.uint8)

        if results.detections:

            for detection in results.detections:

                x_min = int(
                    detection.location_data.relative_bounding_box.xmin * image.shape[1]
                )
                y_min = int(
                    detection.location_data.relative_bounding_box.ymin * image.shape[0]
                )
                width = int(
                    detection.location_data.relative_bounding_box.width * image.shape[1]
                )
                height = int(
                    detection.location_data.relative_bounding_box.height
                    * image.shape[0]
                )

                # draw the colored rectangle
                black_image[y_min : y_min + height, x_min : x_min + width] = 255

        black_image = Image.fromarray(black_image)
        masks.append(black_image)

    return masks


def _crop_to_square(
    image: Image.Image, com: List[Tuple[int, int]], resize_to: Optional[int] = None
):
    cx, cy = com
    width, height = image.size
    if width > height:
        left_possible = max(cx - height / 2, 0)
        left = min(left_possible, width - height)
        right = left + height
        top = 0
        bottom = height
    else:
        left = 0
        right = width
        top_possible = max(cy - width / 2, 0)
        top = min(top_possible, height - width)
        bottom = top + width

    image = image.crop((left, top, right, bottom))

    if resize_to:
        image = image.resize((resize_to, resize_to), Image.Resampling.LANCZOS)

    return image


def _center_of_mass(mask: Image.Image):
    """
    Returns the center of mass of the mask
    """
    x, y = np.meshgrid(np.arange(mask.size[0]), np.arange(mask.size[1]))

    x_ = x * np.array(mask)
    y_ = y * np.array(mask)

    x = np.sum(x_) / np.sum(mask)
    y = np.sum(y_) / np.sum(mask)

    return x, y


def load_and_save_masks_and_captions(
    files: Union[str, List[str]],
    output_dir: str,
    caption_text: Optional[str] = None,
    target_prompts: Optional[Union[List[str], str]] = None,
    target_size: int = 512,
    crop_based_on_salience: bool = True,
    use_face_detection_instead: bool = False,
    temp: float = 1.0,
    n_length: int = -1,
):
    """
    Loads images from the given files, generates masks for them, and saves the masks and captions and upscale images
    to output dir.
    """
    os.makedirs(output_dir, exist_ok=True)

    # load images
    if isinstance(files, str):
        # check if it is a directory
        if os.path.isdir(files):
            # get all the .png .jpg in the directory
            files = glob.glob(os.path.join(files, "*.png")) + glob.glob(
                os.path.join(files, "*.jpg")
            )

        if len(files) == 0:
            raise Exception(
                f"No files found in {files}. Either {files} is not a directory or it does not contain any .png or .jpg files."
            )
        if n_length == -1:
            n_length = len(files)
        files = sorted(files)[:n_length]

    images = [Image.open(file) for file in files]

    # captions
    print(f"Generating {len(images)} captions...")
    captions = blip_captioning_dataset(images, text=caption_text)

    if target_prompts is None:
        target_prompts = captions

    print(f"Generating {len(images)} masks...")
    if not use_face_detection_instead:
        seg_masks = clipseg_mask_generator(
            images=images, target_prompts=target_prompts, temp=temp
        )
    else:
        seg_masks = face_mask_google_mediapipe(images=images)

    # find the center of mass of the mask
    if crop_based_on_salience:
        coms = [_center_of_mass(mask) for mask in seg_masks]
    else:
        coms = [(image.size[0] / 2, image.size[1] / 2) for image in images]
    # based on the center of mass, crop the image to a square
    images = [
        _crop_to_square(image, com, resize_to=None) for image, com in zip(images, coms)
    ]

    print(f"Upscaling {len(images)} images...")
    # upscale images anyways
    images = swin_ir_sr(images, target_size=(target_size, target_size))
    images = [
        image.resize((target_size, target_size), Image.Resampling.LANCZOS)
        for image in images
    ]

    seg_masks = [
        _crop_to_square(mask, com, resize_to=target_size)
        for mask, com in zip(seg_masks, coms)
    ]
    with open(os.path.join(output_dir, "caption.txt"), "w") as f:
        # save images and masks
        for idx, (image, mask, caption) in enumerate(zip(images, seg_masks, captions)):
            image.save(os.path.join(output_dir, f"{idx}.src.jpg"), quality=99)
            mask.save(os.path.join(output_dir, f"{idx}.mask.png"))

            f.write(caption + "\n")


def main():
    fire.Fire(load_and_save_masks_and_captions)