File size: 7,965 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

from argparse import ArgumentParser, Namespace
import sys
import os

class GroupParams:
    pass

class ParamGroup:
    def __init__(self, parser: ArgumentParser, name : str, fill_none = False):
        group = parser.add_argument_group(name)
        for key, value in vars(self).items():
            shorthand = False
            if key.startswith("_"):
                shorthand = True
                key = key[1:]
            t = type(value)
            value = value if not fill_none else None 
            if shorthand:
                if t == bool:
                    group.add_argument("--" + key, ("-" + key[0:1]), default=value, action="store_true")
                else:
                    group.add_argument("--" + key, ("-" + key[0:1]), default=value, type=t)
            else:
                if t == bool:
                    group.add_argument("--" + key, default=value, action="store_true")
                else:
                    group.add_argument("--" + key, default=value, type=t)

    def extract(self, args):
        group = GroupParams()
        for arg in vars(args).items():
            if arg[0] in vars(self) or ("_" + arg[0]) in vars(self):
                setattr(group, arg[0], arg[1])
        return group
    
    def load_yaml(self, opts=None):
        if opts is None:
            return
        else:
            for key, value in opts.items():
                try:
                    setattr(self, key, value)
                except:
                    raise Exception(f'Unknown attribute {key}')

class GuidanceParams(ParamGroup):
    def __init__(self, parser, opts=None):
        self.guidance = "SD"        
        self.g_device = "cuda"

        self.model_key = None
        self.is_safe_tensor = False
        self.base_model_key = None

        self.controlnet_model_key = None

        self.perpneg =  True
        self.negative_w = -2.
        self.front_decay_factor = 2.
        self.side_decay_factor = 10.   
        
        self.vram_O = False
        self.fp16 = True
        self.hf_key = None
        self.t_range = [0.02, 0.5]     
        self.max_t_range = 0.98
        
        self.scheduler_type = 'DDIM'
        self.num_train_timesteps = None 

        self.sds = False
        self.fix_noise = False
        self.noise_seed = 0

        self.ddim_inv = False
        self.delta_t = 80
        self.delta_t_start = 100
        self.annealing_intervals = True
        self.text = ''
        self.inverse_text = ''
        self.textual_inversion_path = None
        self.LoRA_path = None
        self.controlnet_ratio = 0.5
        self.negative = ""
        self.guidance_scale = 7.5
        self.denoise_guidance_scale = 1.0
        self.lambda_guidance = 1.

        self.xs_delta_t = 200
        self.xs_inv_steps = 5
        self.xs_eta = 0.0

        # multi-batch
        self.C_batch_size = 1

        self.vis_interval = 100

        super().__init__(parser, "Guidance Model Parameters")


class ModelParams(ParamGroup): 
    def __init__(self, parser, sentinel=False, opts=None):
        self.sh_degree = 0
        self._source_path = ""
        self._model_path = ""
        self.pretrained_model_path = None
        self._images = "images"
        self.workspace = "debug"
        self.batch = 10  
        self._resolution = -1
        self._white_background = True
        self.data_device = "cuda"
        self.eval = False
        self.opt_path = None
        
        # augmentation
        self.sh_deg_aug_ratio = 0.1
        self.bg_aug_ratio = 0.5
        self.shs_aug_ratio = 0.0
        self.scale_aug_ratio = 1.0
        super().__init__(parser, "Loading Parameters", sentinel)

    def extract(self, args):
        g = super().extract(args)
        g.source_path = os.path.abspath(g.source_path)
        return g


class PipelineParams(ParamGroup):
    def __init__(self, parser, opts=None):
        self.convert_SHs_python = False
        self.compute_cov3D_python = False
        self.debug = False
        super().__init__(parser, "Pipeline Parameters")


class OptimizationParams(ParamGroup):
    def __init__(self, parser, opts=None):
        self.iterations = 5000# 10_000
        self.position_lr_init = 0.00016
        self.position_lr_final = 0.0000016
        self.position_lr_delay_mult = 0.01
        self.position_lr_max_steps = 30_000
        self.feature_lr = 0.0050
        self.feature_lr_final = 0.0030

        self.opacity_lr = 0.05
        self.scaling_lr = 0.005
        self.rotation_lr = 0.001


        self.geo_iter = 0
        self.as_latent_ratio = 0.2
        # dense

        self.resnet_lr = 1e-4
        self.resnet_lr_init = 2e-3
        self.resnet_lr_final = 5e-5


        self.scaling_lr_final = 0.001
        self.rotation_lr_final = 0.0002

        self.percent_dense = 0.003
        self.densify_grad_threshold = 0.00075

        self.lambda_tv = 1.0 # 0.1
        self.lambda_bin = 10.0
        self.lambda_scale = 1.0
        self.lambda_sat = 1.0
        self.lambda_radius = 1.0
        self.densification_interval = 100
        self.opacity_reset_interval = 300
        self.densify_from_iter = 100
        self.densify_until_iter = 30_00 
        
        self.use_control_net_iter = 10000000 
        self.warmup_iter = 1500 
        
        self.use_progressive = False
        self.save_process = True
        self.pro_frames_num = 600
        self.pro_render_45 = False
        self.progressive_view_iter = 500
        self.progressive_view_init_ratio = 0.2

        self.scale_up_cameras_iter = 500
        self.scale_up_factor = 0.95
        self.fovy_scale_up_factor = [0.75, 1.1]
        self.phi_scale_up_factor = 1.5
        super().__init__(parser, "Optimization Parameters")


class GenerateCamParams(ParamGroup):
    def __init__(self, parser):
        self.init_shape = 'sphere'
        self.init_prompt = ''      
        self.use_pointe_rgb  = False
        self.radius_range = [5.2, 5.5] #[3.8, 4.5] #[3.0, 3.5]
        self.max_radius_range = [3.5, 5.0]
        self.default_radius = 3.5
        self.theta_range = [45, 105]
        self.max_theta_range = [45, 105]
        self.phi_range = [-180, 180]
        self.max_phi_range = [-180, 180]
        self.fovy_range = [0.32, 0.60] #[0.3, 1.5] #[0.5, 0.8]  #[10, 30]
        self.max_fovy_range = [0.16, 0.60]
        self.rand_cam_gamma = 1.0
        self.angle_overhead = 30
        self.angle_front =60
        self.render_45 = True
        self.uniform_sphere_rate = 0
        self.image_w = 512
        self.image_h = 512 # 512
        self.SSAA = 1
        self.init_num_pts = 100_000
        self.default_polar = 90
        self.default_azimuth = 0
        self.default_fovy = 0.55 #20
        self.jitter_pose = True
        self.jitter_center = 0.05
        self.jitter_target = 0.05
        self.jitter_up = 0.01
        self.device = "cuda"
        super().__init__(parser, "Generate Cameras Parameters")

def get_combined_args(parser : ArgumentParser):
    cmdlne_string = sys.argv[1:]
    cfgfile_string = "Namespace()"
    args_cmdline = parser.parse_args(cmdlne_string)

    try:
        cfgfilepath = os.path.join(args_cmdline.model_path, "cfg_args")
        print("Looking for config file in", cfgfilepath)
        with open(cfgfilepath) as cfg_file:
            print("Config file found: {}".format(cfgfilepath))
            cfgfile_string = cfg_file.read()
    except TypeError:
        print("Config file not found at")
        pass
    args_cfgfile = eval(cfgfile_string)

    merged_dict = vars(args_cfgfile).copy()
    for k,v in vars(args_cmdline).items():
        if v != None:
            merged_dict[k] = v
    return Namespace(**merged_dict)