Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
pminervini
commited on
Commit
·
f8ae921
1
Parent(s):
8bb4b16
update
Browse files- lm_eval/__init__.py +0 -0
- lm_eval/tasks/__init__.py +0 -0
- lm_eval/tasks/halueval/halueval_qa.yaml +32 -0
- lm_eval/tasks/halueval/utils.py +87 -0
- scripts/data/dialogue_data.json.gz +3 -0
- scripts/data/general_data.json.gz +3 -0
- scripts/data/qa_data.json.gz +3 -0
- scripts/data/summarization_data.json.gz +3 -0
- scripts/halueval-upload-cli.py +69 -0
lm_eval/__init__.py
ADDED
File without changes
|
lm_eval/tasks/__init__.py
ADDED
File without changes
|
lm_eval/tasks/halueval/halueval_qa.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: halueval_qa
|
2 |
+
dataset_path: pminervini/HaluEval
|
3 |
+
dataset_name: qa_samples
|
4 |
+
output_type: generate_until
|
5 |
+
training_split: data
|
6 |
+
validation_split: data
|
7 |
+
doc_to_text: !function utils.doc_to_text_qa
|
8 |
+
doc_to_target: !function utils.doc_to_target_qa
|
9 |
+
process_results: !function utils.process_results_qa
|
10 |
+
fewshot_delimiter: "\n"
|
11 |
+
generation_kwargs:
|
12 |
+
until:
|
13 |
+
- "\n"
|
14 |
+
- "."
|
15 |
+
- ","
|
16 |
+
do_sample: false
|
17 |
+
temperature: 0.0
|
18 |
+
filter_list:
|
19 |
+
- name: remove_whitespace
|
20 |
+
filter:
|
21 |
+
- function: remove_whitespace
|
22 |
+
- function: take_first
|
23 |
+
target_delimiter: " "
|
24 |
+
metric_list:
|
25 |
+
- metric: em
|
26 |
+
aggregation: mean
|
27 |
+
higher_is_better: true
|
28 |
+
- metric: f1
|
29 |
+
aggregation: mean
|
30 |
+
higher_is_better: true
|
31 |
+
metadata:
|
32 |
+
- version: 0.0
|
lm_eval/tasks/halueval/utils.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import zip_longest
|
2 |
+
import transformers.data.metrics.squad_metrics as squad_metrics
|
3 |
+
|
4 |
+
QA_INSTURCTIONS = """I want you act as an answer judge. Given a question and an answer, your objective is to determine if the provided answer contains non-factual or hallucinated information. You SHOULD give your judgement based on the following hallucination types and the world knowledge.
|
5 |
+
|
6 |
+
You are trying to determine if the answer misunderstands the question context and intention.
|
7 |
+
#Question#: What is a rare breed of dog that was derived as a variant of Rat Terrier, Shiloh Shepherd dog or American Hairless Terrier?
|
8 |
+
#Answer#: American Hairless Terrier
|
9 |
+
#Your Judgement#: No
|
10 |
+
|
11 |
+
You are trying to determine if there is a factual contradiction between the answer and the world knowledge. Some information in the answer might be fabricated.
|
12 |
+
#Question#: Are the New Orleans Outfall Canals the same length as the Augusta Canal?
|
13 |
+
#Answer#: No, the New Orleans Outfall Canals and the Augusta Canal are not the same length. The Orleans Canal is approximately 3.6 miles (5.8 kilometers) long while the Augusta Canal is approximately 7 miles (11.3 kilometers) long.
|
14 |
+
#Your Judgement#: Yes
|
15 |
+
#Question#: What U.S Highway gives access to Zilpo Road, and is also known as Midland Trail?
|
16 |
+
#Answer#: U.S Highway 70
|
17 |
+
#Your Judgement#: Yes
|
18 |
+
|
19 |
+
You are trying to determine if the answer is too general or too specific to answer the question at an appropriate level of specificity.
|
20 |
+
#Question#: What genre do Superheaven and Oceansize belong to?
|
21 |
+
#Answer#: Superheaven and Oceansize belong to the rock genre.
|
22 |
+
#Your Judgement#: No
|
23 |
+
#Question#: What profession do Kōbō Abe and Agatha Christie share?
|
24 |
+
#Answer#: Playwright.
|
25 |
+
#Your Judgement#: No
|
26 |
+
|
27 |
+
You are trying to determine if the answer can be correctly inferred from the knowledge.
|
28 |
+
#Question#: Which band has more members, Muse or The Raconteurs?
|
29 |
+
#Answer#: Muse has more members than The Raconteurs.
|
30 |
+
#Your Judgement#: Yes
|
31 |
+
#Question#: Which is currently more valuable, Temagami-Lorrain Mine or Meadowbank Gold Mine?
|
32 |
+
#Answer#: Meadowbank Gold Mine, since Meadowbank Gold Mine is still producing gold and the TemagamiLorrain Mine has been inactive for years.
|
33 |
+
#Your Judgement#: No
|
34 |
+
|
35 |
+
You should try your best to determine if the answer contains non-factual or hallucinated information according to the above hallucination types. The answer you give MUST be \"Yes\" or \"No\""."""
|
36 |
+
|
37 |
+
|
38 |
+
def doc_to_text_qa(doc: dict[str, str]) -> str:
|
39 |
+
doc_text = QA_INSTURCTIONS + "\n\n#Question#: " + doc["question"] + "\n#Answer#: " + doc["answer"] + "\n#Your Judgement#:"
|
40 |
+
return doc_text
|
41 |
+
|
42 |
+
|
43 |
+
def doc_to_target_qa(doc: dict[str, str]) -> str:
|
44 |
+
return doc['hallucination']
|
45 |
+
|
46 |
+
|
47 |
+
def em(gold_list: list[str], predictions: list[str]):
|
48 |
+
# tests for exact match and on the normalised answer (compute_exact)
|
49 |
+
em_sum = 0.0
|
50 |
+
if len(gold_list) > 1:
|
51 |
+
for i in range(len(gold_list)):
|
52 |
+
gold_answers = gold_list[0:i] + gold_list[i + 1 :]
|
53 |
+
# predictions compared against (n) golds and take maximum
|
54 |
+
em_sum += max(squad_metrics.compute_exact(a, predictions) for a in gold_answers)
|
55 |
+
else:
|
56 |
+
em_sum += max(squad_metrics.compute_exact(a, predictions) for a in gold_list)
|
57 |
+
return em_sum / max(1, len(gold_list))
|
58 |
+
|
59 |
+
|
60 |
+
def compute_metrics(gold_list: list[str], predictions: list[str]) -> dict[str, float]:
|
61 |
+
f1_sum = 0.0
|
62 |
+
em_sum = 0.0
|
63 |
+
|
64 |
+
is_correct_lst = []
|
65 |
+
is_exact_lst = []
|
66 |
+
|
67 |
+
if len(gold_list) > 1:
|
68 |
+
for i in range(len(gold_list)):
|
69 |
+
gold_answers = gold_list[0:i] + gold_list[i + 1 :]
|
70 |
+
# predictions compared against (n) golds and take maximum
|
71 |
+
em_sum += max(squad_metrics.compute_exact(a, predictions) for a in gold_answers)
|
72 |
+
f1_sum += max(squad_metrics.compute_f1(a, predictions) for a in gold_answers)
|
73 |
+
else:
|
74 |
+
em_sum += max(squad_metrics.compute_exact(a, predictions) for a in gold_list)
|
75 |
+
f1_sum += max(squad_metrics.compute_f1(a, predictions) for a in gold_list)
|
76 |
+
|
77 |
+
return {
|
78 |
+
"em": em_sum / max(1, len(gold_list)),
|
79 |
+
"f1": f1_sum / max(1, len(gold_list)),
|
80 |
+
}
|
81 |
+
|
82 |
+
|
83 |
+
def process_results_qa(doc: dict[str, str], results):
|
84 |
+
gold_list = doc_to_target_qa(doc)
|
85 |
+
pred = results[0].strip().split("\n")[0]
|
86 |
+
scores = compute_metrics(gold_list, pred)
|
87 |
+
return scores
|
scripts/data/dialogue_data.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05caf10c3a95b8102a5c8eda093586daa15d7c633658520dfb1ea938172371cc
|
3 |
+
size 1861371
|
scripts/data/general_data.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b380d8c981662d5597eaa9bb5a4116971b915a35f1cbae29af9658fc8776f677
|
3 |
+
size 1051292
|
scripts/data/qa_data.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4b67b18c37f19e12b35b4856d983a8d4d9653aaf5e9940862fd27329b92c00a
|
3 |
+
size 1995662
|
scripts/data/summarization_data.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b44a4083b14dd647c0ff7f04de0391fd3860befd0e5ca84c8492b08732270eac
|
3 |
+
size 16445285
|
scripts/halueval-upload-cli.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import random
|
4 |
+
import requests
|
5 |
+
|
6 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
7 |
+
|
8 |
+
|
9 |
+
path = 'pminervini/HaluEval'
|
10 |
+
|
11 |
+
API_URL = f"https://datasets-server.huggingface.co/splits?dataset={path}"
|
12 |
+
response = requests.get(API_URL)
|
13 |
+
res_json = response.json()
|
14 |
+
|
15 |
+
gold_splits = {'dialogue', 'qa', 'summarization', 'general'}
|
16 |
+
|
17 |
+
available_splits = {split['config'] for split in res_json['splits']} if 'splits' in res_json else set()
|
18 |
+
|
19 |
+
name_to_ds = dict()
|
20 |
+
|
21 |
+
for name in gold_splits:
|
22 |
+
ds = load_dataset("json", data_files={'data': f"data/{name}_data.json"})
|
23 |
+
name_to_ds[name] = ds
|
24 |
+
# if name not in available_splits:
|
25 |
+
ds.push_to_hub(path, config_name=name)
|
26 |
+
|
27 |
+
def list_to_dict(lst: list) -> dict:
|
28 |
+
res = dict()
|
29 |
+
for entry in lst:
|
30 |
+
for k, v in entry.items():
|
31 |
+
if k not in res:
|
32 |
+
res[k] = []
|
33 |
+
res[k] += [v]
|
34 |
+
return res
|
35 |
+
|
36 |
+
for name in (gold_splits - {'general'}):
|
37 |
+
random.seed(42)
|
38 |
+
ds = name_to_ds[name]
|
39 |
+
new_entry_lst = []
|
40 |
+
|
41 |
+
for entry in ds['data']:
|
42 |
+
is_hallucinated = random.random() > 0.5
|
43 |
+
if name in {'qa'}:
|
44 |
+
new_entry = {
|
45 |
+
'knowledge': entry['knowledge'],
|
46 |
+
'question': entry['question'],
|
47 |
+
'answer': entry[f'{"hallucinated" if is_hallucinated else "right"}_answer'],
|
48 |
+
'hallucination': 'yes' if is_hallucinated else 'no'
|
49 |
+
}
|
50 |
+
new_entry_lst += [new_entry]
|
51 |
+
if name in {'dialogue'}:
|
52 |
+
new_entry = {
|
53 |
+
'knowledge': entry['knowledge'],
|
54 |
+
'dialogue_history': entry['dialogue_history'],
|
55 |
+
'response': entry[f'{"hallucinated" if is_hallucinated else "right"}_response'],
|
56 |
+
'hallucination': 'yes' if is_hallucinated else 'no'
|
57 |
+
}
|
58 |
+
if name in {'summarization'}:
|
59 |
+
new_entry = {
|
60 |
+
'document': entry['document'],
|
61 |
+
'summary': entry[f'{"hallucinated" if is_hallucinated else "right"}_summary'],
|
62 |
+
'hallucination': 'yes' if is_hallucinated else 'no'
|
63 |
+
}
|
64 |
+
|
65 |
+
new_ds_map = list_to_dict(new_entry_lst)
|
66 |
+
new_ds = Dataset.from_dict(new_ds_map)
|
67 |
+
new_dsd = DatasetDict({'data': new_ds})
|
68 |
+
|
69 |
+
new_dsd.push_to_hub(path, config_name=f'{name}_samples')
|