Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
from typing import Union, List | |
from lm_eval.api.task import Task | |
from lm_eval.api.instance import Instance | |
from lm_eval.api.registry import register_task | |
from lm_eval.api.metrics import mean | |
from src.backend.envs import DEVICE | |
import spacy | |
from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram | |
class SelfCheckGpt(Task): | |
VERSION = 0.0 | |
DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination" | |
DATASET_NAME = None | |
OUTPUT_TYPE = 'generate_until' | |
def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None): | |
super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config) | |
self.generation_kwargs = {"temperature": 0.0, "do_sample": False} | |
self.generation_kwargs_sampling_number = 5 # the number of sampling for self-consistence | |
self.generation_kwargs_sampling = {"temperature": 1.0, "do_sample": False} | |
self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNLI') | |
self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', DEVICE) | |
self.selfcheckgpt_nlp = spacy.load("en_core_web_sm") | |
if self.selfcheckgpt_type == 'SelfCheckNgram': | |
self.selfcheckgpt = SelfCheckNgram(n=1) | |
elif self.selfcheckgpt_type == 'SelfCheckBERTScore': | |
self.selfcheckgpt = SelfCheckBERTScore(rescale_with_baseline=True) | |
elif self.selfcheckgpt_type == 'SelfCheckMQAG': | |
self.selfcheckgpt = SelfCheckMQAG(device=self.selfcheckgpt_device) | |
elif self.selfcheckgpt_type == 'SelfCheckNLI': | |
self.selfcheckgpt = SelfCheckNLI(device=self.selfcheckgpt_device) | |
self.SelfCheckNLI_error_cnt = 0 | |
def has_training_docs(self): | |
return False | |
def has_validation_docs(self): | |
return True | |
def has_test_docs(self): | |
return False | |
def validation_docs(self): | |
return self.dataset["evaluation"] | |
def doc_to_text(self, doc): | |
doc_text = doc["wiki_bio_text"] | |
doc_text = doc_text.split() | |
doc_text = " ".join(doc_text[:5]) | |
# prompt = f"This is a passage from Wikipedia about {context}:\n\n" | |
doc_text = f"Please generate a Wikipedia passage starting with: {doc_text}\n" | |
return doc_text | |
def doc_to_target(self, doc): | |
answer = doc['wiki_bio_text'] | |
return answer | |
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]: | |
arguments = (ctx, self.generation_kwargs) | |
request_list = [ | |
Instance(request_type='generate_until', doc=doc, arguments=arguments, idx=0, **kwargs), | |
] | |
sampling_arguments = (ctx, self.generation_kwargs_sampling) | |
request_list.extend([ | |
Instance(request_type='generate_until', doc=doc, arguments=sampling_arguments, idx=idx, **kwargs) | |
for idx in range(1, self.generation_kwargs_sampling_number+1) | |
] | |
) | |
return request_list | |
def process_results(self, doc, results): | |
response_temperature_0 = results[0] | |
other_responses = results[1:] | |
passage = self.doc_to_target(doc) | |
sentences = self.selfcheckgpt_nlp(response_temperature_0) | |
sentences = [sent.text.strip() for sent in sentences.sents] | |
if self.selfcheckgpt_type == 'SelfCheckNgram': | |
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses) | |
return { | |
'avg-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_neg_logprob'], | |
'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob'] | |
} | |
elif self.selfcheckgpt_type == 'SelfCheckBERTScore': | |
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) | |
elif self.selfcheckgpt_type == 'SelfCheckMQAG': | |
selfcheckgpt_scores = self.selfcheckgpt.predict( | |
sentences=sentences, | |
passage=response_temperature_0, | |
sampled_passages=other_responses, | |
num_questions_per_sent=5, # number of questions to be drawn | |
scoring_method='bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha' | |
beta1=0.8, beta2=0.8) # additional params depending on scoring_method | |
elif self.selfcheckgpt_type == 'SelfCheckNLI': | |
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) | |
if len(selfcheckgpt_scores) == 0: | |
self.SelfCheckNLI_error_cnt += 1 | |
print(f"SelfCheckNLI Warning.SelfCheckNLI_error_cnt:{self.SelfCheckNLI_error_cnt}. This instance is marked as hallucinated with 1.0.") | |
result = { | |
'avg-selfcheckgpt': 1.0, | |
'max-selfcheckgpt': 1.0 | |
} | |
else: | |
threshold = 0.5 | |
# passage is hallucianted if one sentence is hallucinated. It's very strict. | |
selfcheckgpt_scores_max = 1.0 if max(selfcheckgpt_scores) > threshold else 0.0 | |
# passage is hallucianted if average score of all sentences is hallucinated. | |
selfcheckgpt_scores_avg = 1.0 if sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) > threshold else 0.0 | |
result = {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max} | |
return result | |
selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0 | |
selfcheckgpt_scores_max = max(selfcheckgpt_scores) | |
return {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max} | |
def aggregation(self): | |
""" | |
:returns: {str: [float] -> float} | |
A dictionary where keys are the names of submetrics and values are | |
functions that aggregate a list of metrics | |
""" | |
return {k: mean for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]} | |
def higher_is_better(self): | |
""" | |
:returns: {str: bool} | |
A dictionary where keys are the names of submetrics and values are | |
whether a higher value of the submetric is better | |
""" | |
return {k: False for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]} | |