Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 2,574 Bytes
2561b63 73d1e6e f21645c 73d1e6e 2561b63 73d1e6e 2561b63 73d1e6e 95cc038 3d44a49 5ca644e 95cc038 73d1e6e b79c971 e1b962a 2561b63 e1b962a 2561b63 b79c971 95cc038 5ca644e b79c971 e1b962a 2561b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
#!/usr/bin/env python
from huggingface_hub import snapshot_download
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND
from src.backend.manage_requests import get_eval_requests
from src.backend.manage_requests import EvalRequest
from src.backend.run_eval_suite import run_evaluation
from src.backend.tasks.xsum.task import XSum
from src.backend.tasks.cnndm.task import CNNDM
from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt
from lm_eval.tasks import initialize_tasks, include_task_folder
from lm_eval import tasks, evaluator, utils
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
from src.envs import QUEUE_REPO
def main():
# snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
status = [PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS]
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
eval_request = [r for r in eval_requests if 'bloom-560m' in r.model][0]
# my_task = Task("memo-trap", "acc", "memo-trap", 0)
# my_task = Task("selfcheckgpt", "avg-selfcheckgpt", "SGPT", 2)
# my_task = Task("ifeval", "prompt_level_strict_acc", "IFEval", 0)
# my_task = Task("truefalse_cieacf", "acc", "TrueFalse", 5)
# my_task = Task("faithdial_hallu", "acc", "FaithDIAL", 2)
my_task = Task("fever11", "acc", "FEVER", 8)
eval_logger = utils.eval_logger
import logging
eval_logger.setLevel(getattr(logging, "DEBUG"))
TASKS_HARNESS = [my_task]
# task_names = ['triviaqa']
# TASKS_HARNESS = [task.value for task in Tasks]
include_task_folder("src/backend/tasks/")
initialize_tasks('INFO')
# breakpoint()
print(tasks.ALL_TASKS)
for task in TASKS_HARNESS:
print(f"Selected Tasks: [{task}]")
import torch
# breakpoint()
results = evaluator.simple_evaluate(model="hf", model_args=eval_request.get_model_args(), tasks=[task.benchmark], num_fewshot=task.num_fewshot,
batch_size=1, device="mps", use_cache=None, limit=1000, write_out=True)
print('AAA', results["results"])
breakpoint()
if __name__ == "__main__":
main()
|