R1 / app.py
hackergeek98's picture
Update app.py
f576f58 verified
import torch
import gradio as gr
import threading
import logging
import sys
from urllib.parse import urlparse
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
# Configure logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def parse_hf_dataset_url(url: str) -> tuple[str, str | None]:
"""Parse Hugging Face dataset URL into (dataset_name, config)"""
parsed = urlparse(url)
path_parts = parsed.path.split('/')
try:
# Find 'datasets' in path
datasets_idx = path_parts.index('datasets')
except ValueError:
raise ValueError("Invalid Hugging Face dataset URL")
dataset_parts = path_parts[datasets_idx+1:]
dataset_name = "/".join(dataset_parts[0:2])
# Try to find config (common pattern for datasets with viewer)
try:
viewer_idx = dataset_parts.index('viewer')
config = dataset_parts[viewer_idx+1] if viewer_idx+1 < len(dataset_parts) else None
except ValueError:
config = None
return dataset_name, config
def train(dataset_url: str):
try:
# Parse dataset URL
dataset_name, dataset_config = parse_hf_dataset_url(dataset_url)
logging.info(f"Loading dataset: {dataset_name} (config: {dataset_config})")
# Load model and tokenizer
model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True)
# Add padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load dataset from Hugging Face Hub
dataset = load_dataset(
dataset_name,
dataset_config,
trust_remote_code=True
)
# Handle dataset splits
if "train" not in dataset:
raise ValueError("Dataset must have a 'train' split")
train_dataset = dataset["train"]
eval_dataset = dataset.get("validation", dataset.get("test", None))
# Split if no validation set
if eval_dataset is None:
split = train_dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = split["train"]
eval_dataset = split["test"]
# Tokenization function
def tokenize_function(examples):
return tokenizer(
examples["text"], # Adjust column name as needed
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
)
# Tokenize datasets
tokenized_train = train_dataset.map(
tokenize_function,
batched=True,
remove_columns=train_dataset.column_names
)
tokenized_eval = eval_dataset.map(
tokenize_function,
batched=True,
remove_columns=eval_dataset.column_names
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Training arguments
training_args = TrainingArguments(
output_dir="./phi2-results",
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=3,
logging_dir="./logs",
logging_steps=10,
fp16=False,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
data_collator=data_collator,
)
# Start training
logging.info("Training started...")
trainer.train()
trainer.save_model("./phi2-trained-model")
logging.info("Training completed!")
return "βœ… Training succeeded! Model saved."
except Exception as e:
logging.error(f"Training failed: {str(e)}")
return f"❌ Training failed: {str(e)}"
# Gradio interface
with gr.Blocks(title="Phi-2 Training") as demo:
gr.Markdown("# πŸš€ Train Phi-2 with HF Hub Data")
with gr.Row():
dataset_url = gr.Textbox(
label="Dataset URL",
value="https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0"
)
start_btn = gr.Button("Start Training", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
start_btn.click(
fn=lambda url: threading.Thread(target=train, args=(url,)).start(),
inputs=[dataset_url],
outputs=status_output
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
)