Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import threading | |
import logging | |
import sys | |
from urllib.parse import urlparse | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
# Configure logging | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
def parse_hf_dataset_url(url: str) -> tuple[str, str | None]: | |
"""Parse Hugging Face dataset URL into (dataset_name, config)""" | |
parsed = urlparse(url) | |
path_parts = parsed.path.split('/') | |
try: | |
# Find 'datasets' in path | |
datasets_idx = path_parts.index('datasets') | |
except ValueError: | |
raise ValueError("Invalid Hugging Face dataset URL") | |
dataset_parts = path_parts[datasets_idx+1:] | |
dataset_name = "/".join(dataset_parts[0:2]) | |
# Try to find config (common pattern for datasets with viewer) | |
try: | |
viewer_idx = dataset_parts.index('viewer') | |
config = dataset_parts[viewer_idx+1] if viewer_idx+1 < len(dataset_parts) else None | |
except ValueError: | |
config = None | |
return dataset_name, config | |
def train(dataset_url: str): | |
try: | |
# Parse dataset URL | |
dataset_name, dataset_config = parse_hf_dataset_url(dataset_url) | |
logging.info(f"Loading dataset: {dataset_name} (config: {dataset_config})") | |
# Load model and tokenizer | |
model_name = "microsoft/phi-2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) | |
# Add padding token | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load dataset from Hugging Face Hub | |
dataset = load_dataset( | |
dataset_name, | |
dataset_config, | |
trust_remote_code=True | |
) | |
# Handle dataset splits | |
if "train" not in dataset: | |
raise ValueError("Dataset must have a 'train' split") | |
train_dataset = dataset["train"] | |
eval_dataset = dataset.get("validation", dataset.get("test", None)) | |
# Split if no validation set | |
if eval_dataset is None: | |
split = train_dataset.train_test_split(test_size=0.1, seed=42) | |
train_dataset = split["train"] | |
eval_dataset = split["test"] | |
# Tokenization function | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], # Adjust column name as needed | |
padding="max_length", | |
truncation=True, | |
max_length=256, | |
return_tensors="pt", | |
) | |
# Tokenize datasets | |
tokenized_train = train_dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=train_dataset.column_names | |
) | |
tokenized_eval = eval_dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=eval_dataset.column_names | |
) | |
# Data collator | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False | |
) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./phi2-results", | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
num_train_epochs=3, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=False, | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_train, | |
eval_dataset=tokenized_eval, | |
data_collator=data_collator, | |
) | |
# Start training | |
logging.info("Training started...") | |
trainer.train() | |
trainer.save_model("./phi2-trained-model") | |
logging.info("Training completed!") | |
return "β Training succeeded! Model saved." | |
except Exception as e: | |
logging.error(f"Training failed: {str(e)}") | |
return f"β Training failed: {str(e)}" | |
# Gradio interface | |
with gr.Blocks(title="Phi-2 Training") as demo: | |
gr.Markdown("# π Train Phi-2 with HF Hub Data") | |
with gr.Row(): | |
dataset_url = gr.Textbox( | |
label="Dataset URL", | |
value="https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0" | |
) | |
start_btn = gr.Button("Start Training", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
start_btn.click( | |
fn=lambda url: threading.Thread(target=train, args=(url,)).start(), | |
inputs=[dataset_url], | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860 | |
) |