Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
import numpy as np | |
import multiprocessing | |
import io | |
from tops import logger | |
from torch.utils.data._utils.collate import default_collate | |
try: | |
import pyspng | |
PYSPNG_IMPORTED = True | |
except ImportError: | |
PYSPNG_IMPORTED = False | |
print("Could not load pyspng. Defaulting to pillow image backend.") | |
from PIL import Image | |
def get_fdf_keypoints(): | |
return get_coco_keypoints()[:7] | |
def get_fdf_flipmap(): | |
keypoints = get_fdf_keypoints() | |
keypoint_flip_map = { | |
"left_eye": "right_eye", | |
"left_ear": "right_ear", | |
"left_shoulder": "right_shoulder", | |
} | |
for key, value in list(keypoint_flip_map.items()): | |
keypoint_flip_map[value] = key | |
keypoint_flip_map["nose"] = "nose" | |
keypoint_flip_map_idx = [] | |
for source in keypoints: | |
keypoint_flip_map_idx.append(keypoints.index(keypoint_flip_map[source])) | |
return keypoint_flip_map_idx | |
def get_coco_keypoints(): | |
return [ | |
"nose", | |
"left_eye", | |
"right_eye", # 2 | |
"left_ear", | |
"right_ear", # 4 | |
"left_shoulder", | |
"right_shoulder", # 6 | |
"left_elbow", | |
"right_elbow", # 8 | |
"left_wrist", | |
"right_wrist", # 10 | |
"left_hip", | |
"right_hip", # 12 | |
"left_knee", | |
"right_knee", # 14 | |
"left_ankle", | |
"right_ankle", # 16 | |
] | |
def get_coco_flipmap(): | |
keypoints = get_coco_keypoints() | |
keypoint_flip_map = { | |
"left_eye": "right_eye", | |
"left_ear": "right_ear", | |
"left_shoulder": "right_shoulder", | |
"left_elbow": "right_elbow", | |
"left_wrist": "right_wrist", | |
"left_hip": "right_hip", | |
"left_knee": "right_knee", | |
"left_ankle": "right_ankle", | |
} | |
for key, value in list(keypoint_flip_map.items()): | |
keypoint_flip_map[value] = key | |
keypoint_flip_map["nose"] = "nose" | |
keypoint_flip_map_idx = [] | |
for source in keypoints: | |
keypoint_flip_map_idx.append(keypoints.index(keypoint_flip_map[source])) | |
return keypoint_flip_map_idx | |
def mask_decoder(x): | |
mask = torch.from_numpy(np.array(Image.open(io.BytesIO(x)))).squeeze()[None] | |
mask = mask > 0 # This fixes bug causing maskf.loat().max() == 255. | |
return mask | |
def png_decoder(x): | |
if PYSPNG_IMPORTED: | |
return torch.from_numpy(np.rollaxis(pyspng.load(x), 2)) | |
with Image.open(io.BytesIO(x)) as im: | |
im = torch.from_numpy(np.rollaxis(np.array(im.convert("RGB")), 2)) | |
return im | |
def jpg_decoder(x): | |
with Image.open(io.BytesIO(x)) as im: | |
im = torch.from_numpy(np.rollaxis(np.array(im.convert("RGB")), 2)) | |
return im | |
def get_num_workers(num_workers: int): | |
n_cpus = multiprocessing.cpu_count() | |
if num_workers > n_cpus: | |
logger.warn(f"Setting the number of workers to match cpu count: {n_cpus}") | |
return n_cpus | |
return num_workers | |
def collate_fn(batch): | |
elem = batch[0] | |
ignore_keys = set(["embed_map", "vertx2cat"]) | |
batch_ = { | |
key: default_collate([d[key] for d in batch]) | |
for key in elem | |
if key not in ignore_keys | |
} | |
if "embed_map" in elem: | |
batch_["embed_map"] = elem["embed_map"] | |
if "vertx2cat" in elem: | |
batch_["vertx2cat"] = elem["vertx2cat"] | |
return batch_ | |