Spaces:
Runtime error
Runtime error
pseudotensor
commited on
Commit
·
9aa08b9
1
Parent(s):
9e9d047
Update with h2oGPT hash d5a4556404029122394e3b1c0a4ea97d8c996bb6
Browse files- generate.py +187 -73
- gradio_runner.py +107 -84
- utils.py +34 -0
generate.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import functools
|
|
|
2 |
import sys
|
3 |
import os
|
|
|
4 |
import traceback
|
5 |
import typing
|
6 |
-
from threading import Thread
|
7 |
from datetime import datetime
|
8 |
import filelock
|
9 |
import psutil
|
10 |
|
11 |
-
from utils import set_seed, clear_torch_cache, save_generate_output, NullContext, wrapped_partial
|
12 |
|
13 |
SEED = 1236
|
14 |
set_seed(SEED)
|
@@ -35,11 +36,11 @@ eval_extra_columns = ['prompt', 'response', 'score']
|
|
35 |
def main(
|
36 |
load_8bit: bool = False,
|
37 |
load_half: bool = True,
|
38 |
-
infer_devices: bool = True,
|
39 |
base_model: str = '',
|
40 |
tokenizer_base_model: str = '',
|
41 |
lora_weights: str = "",
|
42 |
-
gpu_id: int = 0,
|
43 |
|
44 |
prompt_type: Union[int, str] = None,
|
45 |
# input to generation
|
@@ -60,7 +61,7 @@ def main(
|
|
60 |
share: bool = True,
|
61 |
local_files_only: bool = False,
|
62 |
resume_download: bool = True,
|
63 |
-
use_auth_token: Union[str, bool] = False,
|
64 |
|
65 |
src_lang: str = "English",
|
66 |
tgt_lang: str = "Russian",
|
@@ -68,20 +69,18 @@ def main(
|
|
68 |
gradio: bool = True,
|
69 |
gradio_avoid_processing_markdown: bool = False,
|
70 |
chat: bool = True,
|
71 |
-
chat_history: int = 4096,
|
72 |
-
chat_context: bool = False,
|
73 |
stream_output: bool = True,
|
74 |
show_examples: bool = None,
|
75 |
verbose: bool = False,
|
76 |
h2ocolors: bool = True,
|
77 |
height: int = 400,
|
78 |
show_lora: bool = True,
|
79 |
-
# set to True to load --base_model after client logs in,
|
80 |
-
# to be able to free GPU memory when model is swapped
|
81 |
login_mode_if_model0: bool = False,
|
82 |
block_gradio_exit: bool = True,
|
83 |
concurrency_count: int = 1,
|
84 |
-
api_open: bool = False,
|
85 |
allow_api: bool = True,
|
86 |
input_lines: int = 1,
|
87 |
|
@@ -97,9 +96,64 @@ def main(
|
|
97 |
eval_sharegpt_prompts_only: int = 0,
|
98 |
eval_sharegpt_prompts_only_seed: int = 1234,
|
99 |
eval_sharegpt_as_output: bool = False,
|
100 |
-
|
101 |
-
hard_stop_list: typing.List[str] = [],
|
102 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
|
104 |
is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
|
105 |
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
|
@@ -107,7 +161,7 @@ def main(
|
|
107 |
admin_pass = os.getenv("ADMIN_PASS")
|
108 |
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
|
109 |
# but becomes unrecoverable sometimes if raise, so just be silent for now
|
110 |
-
raise_generate_gpu_exceptions =
|
111 |
|
112 |
# allow set token directly
|
113 |
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
|
@@ -223,9 +277,10 @@ def main(
|
|
223 |
eval_filename = os.path.join(scoring_path, eval_filename)
|
224 |
|
225 |
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
|
226 |
-
|
|
|
227 |
|
228 |
-
with context_class:
|
229 |
# ensure was set right above before examples generated
|
230 |
assert not stream_output, "stream_output=True does not make sense with example loop"
|
231 |
import time
|
@@ -240,7 +295,8 @@ def main(
|
|
240 |
fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir, is_low_mem=is_low_mem,
|
241 |
raise_generate_gpu_exceptions=raise_generate_gpu_exceptions,
|
242 |
chat_context=chat_context,
|
243 |
-
concurrency_count=concurrency_count
|
|
|
244 |
else:
|
245 |
assert eval_sharegpt_prompts_only > 0
|
246 |
|
@@ -288,7 +344,7 @@ def main(
|
|
288 |
truncation=True,
|
289 |
max_length=cutoff_len)
|
290 |
try:
|
291 |
-
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
|
292 |
except torch.cuda.OutOfMemoryError as e:
|
293 |
print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
|
294 |
traceback.print_exc()
|
@@ -649,12 +705,12 @@ def evaluate(
|
|
649 |
debug=False,
|
650 |
concurrency_count=None,
|
651 |
save_dir=None,
|
652 |
-
hard_stop_list=None,
|
653 |
sanitize_bot_response=True,
|
654 |
model_state0=None,
|
655 |
is_low_mem=None,
|
656 |
raise_generate_gpu_exceptions=None,
|
657 |
chat_context=None,
|
|
|
658 |
):
|
659 |
# ensure passed these
|
660 |
assert concurrency_count is not None
|
@@ -710,10 +766,6 @@ def evaluate(
|
|
710 |
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
|
711 |
prompt = prompter.generate_prompt(data_point)
|
712 |
|
713 |
-
if hard_stop_list is None:
|
714 |
-
# acts like undo on user entry and bot response
|
715 |
-
hard_stop_list = []
|
716 |
-
|
717 |
if isinstance(tokenizer, str):
|
718 |
# pipeline
|
719 |
if tokenizer == "summarization":
|
@@ -829,55 +881,115 @@ def evaluate(
|
|
829 |
)
|
830 |
|
831 |
with torch.no_grad():
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
inputs_decoded_raw
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
yield prompter.get_response(outputs, prompt=inputs_decoded,
|
869 |
sanitize_bot_response=sanitize_bot_response)
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
881 |
|
882 |
|
883 |
def generate_with_exceptions(func, prompt, inputs_decoded, raise_generate_gpu_exceptions, **kwargs):
|
@@ -908,7 +1020,8 @@ def generate_with_exceptions(func, prompt, inputs_decoded, raise_generate_gpu_ex
|
|
908 |
return
|
909 |
else:
|
910 |
clear_torch_cache()
|
911 |
-
|
|
|
912 |
|
913 |
|
914 |
def get_generate_params(model_lower, chat,
|
@@ -1154,7 +1267,9 @@ def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_l
|
|
1154 |
|
1155 |
|
1156 |
if __name__ == "__main__":
|
1157 |
-
|
|
|
|
|
1158 |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
|
1159 |
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
|
1160 |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
|
@@ -1180,6 +1295,5 @@ if __name__ == "__main__":
|
|
1180 |
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
|
1181 |
|
1182 |
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
|
1183 |
-
|
1184 |
-
""", flush=True)
|
1185 |
fire.Fire(main)
|
|
|
1 |
import functools
|
2 |
+
import queue
|
3 |
import sys
|
4 |
import os
|
5 |
+
import time
|
6 |
import traceback
|
7 |
import typing
|
|
|
8 |
from datetime import datetime
|
9 |
import filelock
|
10 |
import psutil
|
11 |
|
12 |
+
from utils import set_seed, clear_torch_cache, save_generate_output, NullContext, wrapped_partial, EThread
|
13 |
|
14 |
SEED = 1236
|
15 |
set_seed(SEED)
|
|
|
36 |
def main(
|
37 |
load_8bit: bool = False,
|
38 |
load_half: bool = True,
|
39 |
+
infer_devices: bool = True,
|
40 |
base_model: str = '',
|
41 |
tokenizer_base_model: str = '',
|
42 |
lora_weights: str = "",
|
43 |
+
gpu_id: int = 0,
|
44 |
|
45 |
prompt_type: Union[int, str] = None,
|
46 |
# input to generation
|
|
|
61 |
share: bool = True,
|
62 |
local_files_only: bool = False,
|
63 |
resume_download: bool = True,
|
64 |
+
use_auth_token: Union[str, bool] = False,
|
65 |
|
66 |
src_lang: str = "English",
|
67 |
tgt_lang: str = "Russian",
|
|
|
69 |
gradio: bool = True,
|
70 |
gradio_avoid_processing_markdown: bool = False,
|
71 |
chat: bool = True,
|
72 |
+
chat_history: int = 4096,
|
73 |
+
chat_context: bool = False,
|
74 |
stream_output: bool = True,
|
75 |
show_examples: bool = None,
|
76 |
verbose: bool = False,
|
77 |
h2ocolors: bool = True,
|
78 |
height: int = 400,
|
79 |
show_lora: bool = True,
|
|
|
|
|
80 |
login_mode_if_model0: bool = False,
|
81 |
block_gradio_exit: bool = True,
|
82 |
concurrency_count: int = 1,
|
83 |
+
api_open: bool = False,
|
84 |
allow_api: bool = True,
|
85 |
input_lines: int = 1,
|
86 |
|
|
|
96 |
eval_sharegpt_prompts_only: int = 0,
|
97 |
eval_sharegpt_prompts_only_seed: int = 1234,
|
98 |
eval_sharegpt_as_output: bool = False,
|
|
|
|
|
99 |
):
|
100 |
+
"""
|
101 |
+
|
102 |
+
:param load_8bit: load model in 8-bit using bitsandbytes
|
103 |
+
:param load_half: load model in float16
|
104 |
+
:param infer_devices: whether to control devices with gpu_id. If False, then spread across GPUs
|
105 |
+
:param base_model: model HF-type name
|
106 |
+
:param tokenizer_base_model: tokenizer HF-type name
|
107 |
+
:param lora_weights: LORA weights path/HF link
|
108 |
+
:param gpu_id: if infer_devices, then use gpu_id for cuda device ID, or auto mode if gpu_id != -1
|
109 |
+
:param prompt_type: type of prompt, usually matched to fine-tuned model or plain for foundational model
|
110 |
+
:param temperature: generation temperature
|
111 |
+
:param top_p: generation top_p
|
112 |
+
:param top_k: generation top_k
|
113 |
+
:param num_beams: generatino number of beams
|
114 |
+
:param repetition_penalty: generation repetition penalty
|
115 |
+
:param num_return_sequences: generation number of sequences (1 forced for chat)
|
116 |
+
:param do_sample: generation sample
|
117 |
+
:param max_new_tokens: generation max new tokens
|
118 |
+
:param min_new_tokens: generation min tokens
|
119 |
+
:param early_stopping: generation early stopping
|
120 |
+
:param max_time: maximum time to allow for generation
|
121 |
+
:param debug: enable debug mode
|
122 |
+
:param save_dir: directory chat data is saved to
|
123 |
+
:param share: whether to share the gradio app with sharable URL
|
124 |
+
:param local_files_only: whether to only use local files instead of doing to HF for models
|
125 |
+
:param resume_download: whether to resume downloads from HF for models
|
126 |
+
:param use_auth_token: whether to use HF auth token (requires CLI did huggingface-cli login before)
|
127 |
+
:param src_lang: source languages to include if doing translation (None = all)
|
128 |
+
:param tgt_lang: target languages to include if doing translation (None = all)
|
129 |
+
:param gradio: whether to enable gradio, or to enable benchmark mode
|
130 |
+
:param gradio_avoid_processing_markdown:
|
131 |
+
:param chat: whether to enable chat mode with chat history
|
132 |
+
:param chat_history: maximum character length of chat context/history
|
133 |
+
:param chat_context: whether to use extra helpful context if human_bot
|
134 |
+
:param stream_output: whether to stream output from generate
|
135 |
+
:param show_examples: whether to show clickable examples in gradio
|
136 |
+
:param verbose: whether to show verbose prints
|
137 |
+
:param h2ocolors: whether to use H2O.ai theme
|
138 |
+
:param height: height of chat window
|
139 |
+
:param show_lora: whether to show LORA options in UI (expert so can be hard to understand)
|
140 |
+
:param login_mode_if_model0: set to True to load --base_model after client logs in, to be able to free GPU memory when model is swapped
|
141 |
+
:param block_gradio_exit: whether to block gradio exit (used for testing)
|
142 |
+
:param concurrency_count: gradio concurrency count (1 is optimal for LLMs)
|
143 |
+
:param api_open: If False, don't let API calls skip gradio queue
|
144 |
+
:param allow_api: whether to allow API calls at all to gradio server
|
145 |
+
:param input_lines: how many input lines to show for chat box (>1 forces shift-enter for submit, else enter is submit)
|
146 |
+
:param sanitize_user_prompt: whether to remove profanity from user input
|
147 |
+
:param sanitize_bot_response: whether to remove profanity and repeat lines from bot output
|
148 |
+
:param extra_model_options: extra models to show in list in gradio
|
149 |
+
:param extra_lora_options: extra LORAA to show in list in gradio
|
150 |
+
:param score_model: which model to score responses (None means no scoring)
|
151 |
+
:param auto_score: whether to automatically score responses
|
152 |
+
:param eval_sharegpt_prompts_only: for no gradio benchmark, if using ShareGPT prompts for eval
|
153 |
+
:param eval_sharegpt_prompts_only_seed: for no gradio benchmark, if seed for ShareGPT sampling
|
154 |
+
:param eval_sharegpt_as_output: for no gradio benchmark, whether to test ShareGPT output itself
|
155 |
+
:return:
|
156 |
+
"""
|
157 |
is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
|
158 |
is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
|
159 |
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
|
|
|
161 |
admin_pass = os.getenv("ADMIN_PASS")
|
162 |
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
|
163 |
# but becomes unrecoverable sometimes if raise, so just be silent for now
|
164 |
+
raise_generate_gpu_exceptions = True
|
165 |
|
166 |
# allow set token directly
|
167 |
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
|
|
|
277 |
eval_filename = os.path.join(scoring_path, eval_filename)
|
278 |
|
279 |
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
|
280 |
+
device = 'cpu' if n_gpus == 0 else 'cuda'
|
281 |
+
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
|
282 |
|
283 |
+
with context_class(device):
|
284 |
# ensure was set right above before examples generated
|
285 |
assert not stream_output, "stream_output=True does not make sense with example loop"
|
286 |
import time
|
|
|
295 |
fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir, is_low_mem=is_low_mem,
|
296 |
raise_generate_gpu_exceptions=raise_generate_gpu_exceptions,
|
297 |
chat_context=chat_context,
|
298 |
+
concurrency_count=concurrency_count,
|
299 |
+
lora_weights=lora_weights)
|
300 |
else:
|
301 |
assert eval_sharegpt_prompts_only > 0
|
302 |
|
|
|
344 |
truncation=True,
|
345 |
max_length=cutoff_len)
|
346 |
try:
|
347 |
+
score = torch.sigmoid(smodel(**inputs).logits[0].float()).cpu().detach().numpy()[0]
|
348 |
except torch.cuda.OutOfMemoryError as e:
|
349 |
print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
|
350 |
traceback.print_exc()
|
|
|
705 |
debug=False,
|
706 |
concurrency_count=None,
|
707 |
save_dir=None,
|
|
|
708 |
sanitize_bot_response=True,
|
709 |
model_state0=None,
|
710 |
is_low_mem=None,
|
711 |
raise_generate_gpu_exceptions=None,
|
712 |
chat_context=None,
|
713 |
+
lora_weights=None,
|
714 |
):
|
715 |
# ensure passed these
|
716 |
assert concurrency_count is not None
|
|
|
766 |
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
|
767 |
prompt = prompter.generate_prompt(data_point)
|
768 |
|
|
|
|
|
|
|
|
|
769 |
if isinstance(tokenizer, str):
|
770 |
# pipeline
|
771 |
if tokenizer == "summarization":
|
|
|
881 |
)
|
882 |
|
883 |
with torch.no_grad():
|
884 |
+
context_class_cast = NullContext if device == 'cpu' or lora_weights else torch.autocast
|
885 |
+
with context_class_cast(device):
|
886 |
+
# protection for gradio not keeping track of closed users,
|
887 |
+
# else hit bitsandbytes lack of thread safety:
|
888 |
+
# https://github.com/h2oai/h2ogpt/issues/104
|
889 |
+
# but only makes sense if concurrency_count == 1
|
890 |
+
context_class = NullContext #if concurrency_count > 1 else filelock.FileLock
|
891 |
+
print('Pre-Generate: %s' % str(datetime.now()), flush=True)
|
892 |
+
decoded_output = None
|
893 |
+
with context_class("generate.lock"):
|
894 |
+
print('Generate: %s' % str(datetime.now()), flush=True)
|
895 |
+
# decoded tokenized prompt can deviate from prompt due to special characters
|
896 |
+
inputs_decoded = decoder(input_ids[0])
|
897 |
+
inputs_decoded_raw = decoder_raw(input_ids[0])
|
898 |
+
if inputs_decoded == prompt:
|
899 |
+
# normal
|
900 |
+
pass
|
901 |
+
elif inputs_decoded.lstrip() == prompt.lstrip():
|
902 |
+
# sometimes extra space in front, make prompt same for prompt removal
|
903 |
+
prompt = inputs_decoded
|
904 |
+
elif inputs_decoded_raw == prompt:
|
905 |
+
# some models specify special tokens that are part of normal prompt, so can't skip them
|
906 |
+
inputs_decoded_raw = inputs_decoded
|
907 |
+
decoder = decoder_raw
|
908 |
+
else:
|
909 |
+
print("WARNING: Special characters in prompt", flush=True)
|
910 |
+
if stream_output:
|
911 |
+
skip_prompt = False
|
912 |
+
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False)
|
913 |
+
gen_kwargs.update(dict(streamer=streamer))
|
914 |
+
target_func = generate_with_exceptions
|
915 |
+
target = wrapped_partial(generate_with_exceptions, model.generate, prompt, inputs_decoded,
|
916 |
+
raise_generate_gpu_exceptions, **gen_kwargs)
|
917 |
+
bucket = queue.Queue()
|
918 |
+
thread = EThread(target=target, kwargs=dict(streamer=streamer), bucket=bucket)
|
919 |
+
thread.start()
|
920 |
+
outputs = ""
|
921 |
+
try:
|
922 |
+
for new_text in streamer:
|
923 |
+
if bucket.qsize() > 0 or thread.exc:
|
924 |
+
thread.join()
|
925 |
+
outputs += new_text
|
926 |
+
yield prompter.get_response(outputs, prompt=inputs_decoded,
|
927 |
+
sanitize_bot_response=sanitize_bot_response)
|
928 |
+
except BaseException:
|
929 |
+
# if any exception, raise that exception if was from thread, first
|
930 |
+
if thread.exc:
|
931 |
+
raise thread.exc
|
932 |
+
raise
|
933 |
+
finally:
|
934 |
+
# in case no exception and didn't join with thread yet, then join
|
935 |
+
if not thread.exc:
|
936 |
+
thread.join()
|
937 |
+
# in case raise StopIteration or broke queue loop in streamer, but still have exception
|
938 |
+
if thread.exc:
|
939 |
+
raise thread.exc
|
940 |
+
decoded_output = outputs
|
941 |
+
else:
|
942 |
+
outputs = model.generate(**gen_kwargs)
|
943 |
+
outputs = [decoder(s) for s in outputs.sequences]
|
944 |
yield prompter.get_response(outputs, prompt=inputs_decoded,
|
945 |
sanitize_bot_response=sanitize_bot_response)
|
946 |
+
if outputs and len(outputs) >= 1:
|
947 |
+
decoded_output = prompt + outputs[0]
|
948 |
+
if save_dir and decoded_output:
|
949 |
+
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
|
950 |
+
print('Post-Generate: %s decoded_output: %s' % (str(datetime.now()), len(decoded_output) if decoded_output else -1), flush=True)
|
951 |
+
|
952 |
+
|
953 |
+
class H2OTextIteratorStreamer(TextIteratorStreamer):
|
954 |
+
"""
|
955 |
+
normally, timeout required for now to handle exceptions, else get()
|
956 |
+
but with H2O version of TextIteratorStreamer, loop over block to handle
|
957 |
+
"""
|
958 |
+
def __init__(self, tokenizer, skip_prompt: bool = False, timeout: typing.Optional[float] = None,
|
959 |
+
block=True, **decode_kwargs):
|
960 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
961 |
+
self.text_queue = queue.Queue()
|
962 |
+
self.stop_signal = None
|
963 |
+
self.do_stop = False
|
964 |
+
self.timeout = timeout
|
965 |
+
self.block = block
|
966 |
+
|
967 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
968 |
+
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue."""
|
969 |
+
self.text_queue.put(text, timeout=self.timeout)
|
970 |
+
if stream_end:
|
971 |
+
self.text_queue.put(self.stop_signal, timeout=self.timeout)
|
972 |
+
|
973 |
+
def __iter__(self):
|
974 |
+
return self
|
975 |
+
|
976 |
+
def __next__(self):
|
977 |
+
while True:
|
978 |
+
try:
|
979 |
+
value = self.stop_signal # value looks unused in pycharm, not true
|
980 |
+
if self.do_stop:
|
981 |
+
print("hit stop", flush=True)
|
982 |
+
# could raise or break, maybe best to raise and make parent see if any exception in thread
|
983 |
+
raise StopIteration()
|
984 |
+
#break
|
985 |
+
value = self.text_queue.get(block=self.block, timeout=self.timeout)
|
986 |
+
break
|
987 |
+
except queue.Empty:
|
988 |
+
time.sleep(0.01)
|
989 |
+
if value == self.stop_signal:
|
990 |
+
raise StopIteration()
|
991 |
+
else:
|
992 |
+
return value
|
993 |
|
994 |
|
995 |
def generate_with_exceptions(func, prompt, inputs_decoded, raise_generate_gpu_exceptions, **kwargs):
|
|
|
1020 |
return
|
1021 |
else:
|
1022 |
clear_torch_cache()
|
1023 |
+
if raise_generate_gpu_exceptions:
|
1024 |
+
raise
|
1025 |
|
1026 |
|
1027 |
def get_generate_params(model_lower, chat,
|
|
|
1267 |
|
1268 |
|
1269 |
if __name__ == "__main__":
|
1270 |
+
"""
|
1271 |
+
Examples:
|
1272 |
+
|
1273 |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
|
1274 |
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
|
1275 |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
|
|
|
1295 |
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
|
1296 |
|
1297 |
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
|
1298 |
+
"""
|
|
|
1299 |
fire.Fire(main)
|
gradio_runner.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import functools
|
2 |
import inspect
|
3 |
import os
|
@@ -246,7 +247,11 @@ def go_gradio(**kwargs):
|
|
246 |
value=kwargs['top_k'], label="Top k",
|
247 |
info='Num. tokens to sample from'
|
248 |
)
|
249 |
-
|
|
|
|
|
|
|
|
|
250 |
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
|
251 |
value=min(max_beams, kwargs['num_beams']), label="Beams",
|
252 |
info="Number of searches for optimal overall probability. "
|
@@ -262,7 +267,9 @@ def go_gradio(**kwargs):
|
|
262 |
)
|
263 |
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
|
264 |
value=kwargs['early_stopping'])
|
265 |
-
max_max_time = 60 * 5 if not
|
|
|
|
|
266 |
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
|
267 |
value=min(max_max_time, kwargs['max_time']), label="Max. time",
|
268 |
info="Max. time to search optimal output.")
|
@@ -309,9 +316,10 @@ def go_gradio(**kwargs):
|
|
309 |
model_gpu = gr.Dropdown(n_gpus_list,
|
310 |
label="GPU ID 2 [-1 = all GPUs, if Choose is enabled]",
|
311 |
value=kwargs['gpu_id'])
|
312 |
-
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model']
|
|
|
313 |
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
|
314 |
-
visible=kwargs['show_lora'])
|
315 |
with gr.Row():
|
316 |
with gr.Column(scale=50):
|
317 |
new_model = gr.Textbox(label="New Model HF name/path")
|
@@ -354,15 +362,15 @@ def go_gradio(**kwargs):
|
|
354 |
with gr.Column():
|
355 |
with gr.Row():
|
356 |
system_btn = gr.Button(value='Get System Info')
|
357 |
-
system_text = gr.Textbox(label='System Info')
|
358 |
|
359 |
with gr.Row():
|
360 |
zip_btn = gr.Button("Zip")
|
361 |
-
zip_text = gr.Textbox(label="Zip file name")
|
362 |
file_output = gr.File()
|
363 |
with gr.Row():
|
364 |
s3up_btn = gr.Button("S3UP")
|
365 |
-
s3up_text = gr.Textbox(label='S3UP result')
|
366 |
|
367 |
# Get flagged data
|
368 |
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
|
@@ -395,12 +403,15 @@ def go_gradio(**kwargs):
|
|
395 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
396 |
size="sm",
|
397 |
)
|
|
|
|
|
398 |
dark_mode_btn.click(
|
399 |
None,
|
400 |
None,
|
401 |
None,
|
402 |
_js=get_dark_js(),
|
403 |
api_name="dark" if allow_api else None,
|
|
|
404 |
)
|
405 |
|
406 |
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
|
@@ -415,7 +426,8 @@ def go_gradio(**kwargs):
|
|
415 |
|
416 |
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
|
417 |
.then(col_chat_fun, chat, col_chat) \
|
418 |
-
.then(context_fun, chat, context)
|
|
|
419 |
|
420 |
# examples after submit or any other buttons for chat or no chat
|
421 |
if kwargs['examples'] is not None and kwargs['show_examples']:
|
@@ -514,6 +526,10 @@ def go_gradio(**kwargs):
|
|
514 |
if sanitize_user_prompt:
|
515 |
from better_profanity import profanity
|
516 |
user_message1 = profanity.censor(user_message1)
|
|
|
|
|
|
|
|
|
517 |
|
518 |
history = args_list[-1]
|
519 |
if undo and history:
|
@@ -541,15 +557,17 @@ def go_gradio(**kwargs):
|
|
541 |
:param retry:
|
542 |
:return:
|
543 |
"""
|
544 |
-
args_list = list(args)
|
545 |
history = args_list[-1] # model_state is -2
|
546 |
if retry and history:
|
547 |
history.pop()
|
548 |
if not history:
|
549 |
print("No history", flush=True)
|
|
|
|
|
550 |
return
|
551 |
# ensure output will be unique to models
|
552 |
-
history =
|
553 |
instruction1 = history[-1][0]
|
554 |
context1 = ''
|
555 |
if kwargs['chat_history'] > 0:
|
@@ -571,6 +589,8 @@ def go_gradio(**kwargs):
|
|
571 |
args_list[2] = context1[-kwargs['chat_history']:]
|
572 |
model_state1 = args_list[-2]
|
573 |
if model_state1[0] is None or model_state1[0] == no_model_str:
|
|
|
|
|
574 |
return
|
575 |
args_list = args_list[:-2]
|
576 |
fun1 = partial(evaluate,
|
@@ -580,19 +600,25 @@ def go_gradio(**kwargs):
|
|
580 |
for output in fun1(*tuple(args_list)):
|
581 |
bot_message = output
|
582 |
history[-1][1] = bot_message
|
583 |
-
yield history
|
584 |
except StopIteration:
|
585 |
-
yield history
|
586 |
except RuntimeError as e:
|
587 |
if "generator raised StopIteration" in str(e):
|
588 |
# assume last entry was bad, undo
|
589 |
history.pop()
|
590 |
-
yield history
|
591 |
-
|
|
|
|
|
|
|
|
|
592 |
except Exception as e:
|
593 |
# put error into user input
|
594 |
-
|
595 |
-
|
|
|
|
|
596 |
raise
|
597 |
return
|
598 |
|
@@ -603,11 +629,11 @@ def go_gradio(**kwargs):
|
|
603 |
)
|
604 |
bot_args = dict(fn=bot,
|
605 |
inputs=inputs_list + [model_state] + [text_output],
|
606 |
-
outputs=text_output,
|
607 |
)
|
608 |
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
|
609 |
inputs=inputs_list + [model_state] + [text_output],
|
610 |
-
outputs=text_output,
|
611 |
)
|
612 |
undo_user_args = dict(fn=functools.partial(user, undo=True),
|
613 |
inputs=inputs_list + [text_output],
|
@@ -621,11 +647,11 @@ def go_gradio(**kwargs):
|
|
621 |
)
|
622 |
bot_args2 = dict(fn=bot,
|
623 |
inputs=inputs_list + [model_state2] + [text_output2],
|
624 |
-
outputs=text_output2,
|
625 |
)
|
626 |
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
|
627 |
inputs=inputs_list + [model_state2] + [text_output2],
|
628 |
-
outputs=text_output2,
|
629 |
)
|
630 |
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
|
631 |
inputs=inputs_list + [text_output2],
|
@@ -636,67 +662,61 @@ def go_gradio(**kwargs):
|
|
636 |
return gr.Textbox.update(value='')
|
637 |
|
638 |
if kwargs['auto_score']:
|
639 |
-
|
640 |
-
|
641 |
-
submit_event = instruction.submit(**user_args, queue=queue,
|
642 |
-
api_name='instruction' if allow_api else None) \
|
643 |
-
.then(**user_args2, api_name='instruction2' if allow_api else None) \
|
644 |
-
.then(clear_instruct, None, instruction) \
|
645 |
-
.then(clear_instruct, None, iinput) \
|
646 |
-
.then(**bot_args, api_name='instruction_bot' if allow_api else None, queue=queue) \
|
647 |
-
.then(**score_args, api_name='instruction_bot_score' if allow_api else None, queue=queue) \
|
648 |
-
.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, queue=queue) \
|
649 |
-
.then(**score_args2, api_name='instruction_bot_score2' if allow_api else None, queue=queue) \
|
650 |
-
.then(clear_torch_cache)
|
651 |
-
submit_event2 = submit.click(**user_args, api_name='submit' if allow_api else None) \
|
652 |
-
.then(**user_args2, api_name='submit2' if allow_api else None) \
|
653 |
-
.then(clear_instruct, None, instruction) \
|
654 |
-
.then(clear_instruct, None, iinput) \
|
655 |
-
.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) \
|
656 |
-
.then(**score_args, api_name='submit_bot_score' if allow_api else None, queue=queue) \
|
657 |
-
.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue) \
|
658 |
-
.then(**score_args2, api_name='submit_bot_score2' if allow_api else None, queue=queue) \
|
659 |
-
.then(clear_torch_cache)
|
660 |
-
submit_event3 = retry.click(**user_args, api_name='retry' if allow_api else None) \
|
661 |
-
.then(**user_args2, api_name='retry2' if allow_api else None) \
|
662 |
-
.then(clear_instruct, None, instruction) \
|
663 |
-
.then(clear_instruct, None, iinput) \
|
664 |
-
.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, queue=queue) \
|
665 |
-
.then(**score_args, api_name='retry_bot_score' if allow_api else None, queue=queue) \
|
666 |
-
.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, queue=queue) \
|
667 |
-
.then(**score_args2, api_name='retry_bot_score2' if allow_api else None, queue=queue) \
|
668 |
-
.then(clear_torch_cache)
|
669 |
-
submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
|
670 |
-
.then(**undo_user_args2, api_name='undo2' if allow_api else None) \
|
671 |
-
.then(clear_instruct, None, instruction) \
|
672 |
-
.then(clear_instruct, None, iinput) \
|
673 |
-
.then(**score_args, api_name='undo_score' if allow_api else None) \
|
674 |
-
.then(**score_args2, api_name='undo_score2' if allow_api else None)
|
675 |
else:
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
|
701 |
# does both models
|
702 |
clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \
|
@@ -864,9 +884,12 @@ def go_gradio(**kwargs):
|
|
864 |
api_name='system_info' if allow_api else None, queue=False)
|
865 |
|
866 |
# don't pass text_output, don't want to clear output, just stop it
|
867 |
-
#
|
868 |
stop_btn.click(lambda: None, None, None,
|
869 |
-
cancels=[
|
|
|
|
|
|
|
870 |
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False)
|
871 |
demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None)
|
872 |
|
@@ -887,8 +910,8 @@ def go_gradio(**kwargs):
|
|
887 |
|
888 |
|
889 |
input_args_list = ['model_state']
|
890 |
-
inputs_kwargs_list = ['debug', 'save_dir', '
|
891 |
-
'raise_generate_gpu_exceptions', 'chat_context', 'concurrency_count']
|
892 |
|
893 |
|
894 |
def get_inputs_list(inputs_dict, model_lower):
|
|
|
1 |
+
import copy
|
2 |
import functools
|
3 |
import inspect
|
4 |
import os
|
|
|
247 |
value=kwargs['top_k'], label="Top k",
|
248 |
info='Num. tokens to sample from'
|
249 |
)
|
250 |
+
# FIXME: https://github.com/h2oai/h2ogpt/issues/106
|
251 |
+
if os.getenv('TESTINGFAIL'):
|
252 |
+
max_beams = 8 if not (is_low_mem or is_public) else 1
|
253 |
+
else:
|
254 |
+
max_beams = 1
|
255 |
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
|
256 |
value=min(max_beams, kwargs['num_beams']), label="Beams",
|
257 |
info="Number of searches for optimal overall probability. "
|
|
|
267 |
)
|
268 |
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
|
269 |
value=kwargs['early_stopping'])
|
270 |
+
max_max_time = 60 * 5 if not is_public else 60 * 2
|
271 |
+
if is_hf:
|
272 |
+
max_max_time = min(max_max_time, 60 * 1)
|
273 |
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
|
274 |
value=min(max_max_time, kwargs['max_time']), label="Max. time",
|
275 |
info="Max. time to search optimal output.")
|
|
|
316 |
model_gpu = gr.Dropdown(n_gpus_list,
|
317 |
label="GPU ID 2 [-1 = all GPUs, if Choose is enabled]",
|
318 |
value=kwargs['gpu_id'])
|
319 |
+
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'],
|
320 |
+
interactive=False)
|
321 |
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
|
322 |
+
visible=kwargs['show_lora'], interactive=False)
|
323 |
with gr.Row():
|
324 |
with gr.Column(scale=50):
|
325 |
new_model = gr.Textbox(label="New Model HF name/path")
|
|
|
362 |
with gr.Column():
|
363 |
with gr.Row():
|
364 |
system_btn = gr.Button(value='Get System Info')
|
365 |
+
system_text = gr.Textbox(label='System Info', interactive=False)
|
366 |
|
367 |
with gr.Row():
|
368 |
zip_btn = gr.Button("Zip")
|
369 |
+
zip_text = gr.Textbox(label="Zip file name", interactive=False)
|
370 |
file_output = gr.File()
|
371 |
with gr.Row():
|
372 |
s3up_btn = gr.Button("S3UP")
|
373 |
+
s3up_text = gr.Textbox(label='S3UP result', interactive=False)
|
374 |
|
375 |
# Get flagged data
|
376 |
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
|
|
|
403 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
404 |
size="sm",
|
405 |
)
|
406 |
+
# FIXME: Could add exceptions for non-chat but still streaming
|
407 |
+
exception_text = gr.Textbox(value="", visible=kwargs['chat'], label='Chat Exceptions', interactive=False)
|
408 |
dark_mode_btn.click(
|
409 |
None,
|
410 |
None,
|
411 |
None,
|
412 |
_js=get_dark_js(),
|
413 |
api_name="dark" if allow_api else None,
|
414 |
+
queue=False,
|
415 |
)
|
416 |
|
417 |
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
|
|
|
426 |
|
427 |
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
|
428 |
.then(col_chat_fun, chat, col_chat) \
|
429 |
+
.then(context_fun, chat, context) \
|
430 |
+
.then(col_chat_fun, chat, exception_text)
|
431 |
|
432 |
# examples after submit or any other buttons for chat or no chat
|
433 |
if kwargs['examples'] is not None and kwargs['show_examples']:
|
|
|
526 |
if sanitize_user_prompt:
|
527 |
from better_profanity import profanity
|
528 |
user_message1 = profanity.censor(user_message1)
|
529 |
+
if user_message1 in ['']:
|
530 |
+
# e.g. when user just hits enter in textbox,
|
531 |
+
# else will have <human>: <bot>: on single line, which seems to be "ok" for LLM but not usual
|
532 |
+
user_message1 = '\n'
|
533 |
|
534 |
history = args_list[-1]
|
535 |
if undo and history:
|
|
|
557 |
:param retry:
|
558 |
:return:
|
559 |
"""
|
560 |
+
args_list = copy.deepcopy(list(args))
|
561 |
history = args_list[-1] # model_state is -2
|
562 |
if retry and history:
|
563 |
history.pop()
|
564 |
if not history:
|
565 |
print("No history", flush=True)
|
566 |
+
history = [['', None]]
|
567 |
+
yield history, ''
|
568 |
return
|
569 |
# ensure output will be unique to models
|
570 |
+
history = copy.deepcopy(history)
|
571 |
instruction1 = history[-1][0]
|
572 |
context1 = ''
|
573 |
if kwargs['chat_history'] > 0:
|
|
|
589 |
args_list[2] = context1[-kwargs['chat_history']:]
|
590 |
model_state1 = args_list[-2]
|
591 |
if model_state1[0] is None or model_state1[0] == no_model_str:
|
592 |
+
history = [['', None]]
|
593 |
+
yield history, ''
|
594 |
return
|
595 |
args_list = args_list[:-2]
|
596 |
fun1 = partial(evaluate,
|
|
|
600 |
for output in fun1(*tuple(args_list)):
|
601 |
bot_message = output
|
602 |
history[-1][1] = bot_message
|
603 |
+
yield history, ''
|
604 |
except StopIteration:
|
605 |
+
yield history, ''
|
606 |
except RuntimeError as e:
|
607 |
if "generator raised StopIteration" in str(e):
|
608 |
# assume last entry was bad, undo
|
609 |
history.pop()
|
610 |
+
yield history, ''
|
611 |
+
else:
|
612 |
+
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
|
613 |
+
history[-1][1] = ''
|
614 |
+
yield history, str(e)
|
615 |
+
raise
|
616 |
except Exception as e:
|
617 |
# put error into user input
|
618 |
+
ex = "Exception: %s" % str(e)
|
619 |
+
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
|
620 |
+
history[-1][1] = ''
|
621 |
+
yield history, ex
|
622 |
raise
|
623 |
return
|
624 |
|
|
|
629 |
)
|
630 |
bot_args = dict(fn=bot,
|
631 |
inputs=inputs_list + [model_state] + [text_output],
|
632 |
+
outputs=[text_output, exception_text],
|
633 |
)
|
634 |
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
|
635 |
inputs=inputs_list + [model_state] + [text_output],
|
636 |
+
outputs=[text_output, exception_text],
|
637 |
)
|
638 |
undo_user_args = dict(fn=functools.partial(user, undo=True),
|
639 |
inputs=inputs_list + [text_output],
|
|
|
647 |
)
|
648 |
bot_args2 = dict(fn=bot,
|
649 |
inputs=inputs_list + [model_state2] + [text_output2],
|
650 |
+
outputs=[text_output2, exception_text],
|
651 |
)
|
652 |
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
|
653 |
inputs=inputs_list + [model_state2] + [text_output2],
|
654 |
+
outputs=[text_output2, exception_text],
|
655 |
)
|
656 |
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
|
657 |
inputs=inputs_list + [text_output2],
|
|
|
662 |
return gr.Textbox.update(value='')
|
663 |
|
664 |
if kwargs['auto_score']:
|
665 |
+
score_args_submit = score_args
|
666 |
+
score_args2_submit = score_args2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
667 |
else:
|
668 |
+
score_args_submit = dict(fn=lambda: None, inputs=None, outputs=None)
|
669 |
+
score_args2_submit = dict(fn=lambda: None, inputs=None, outputs=None)
|
670 |
+
|
671 |
+
# in case 2nd model, consume instruction first, so can clear quickly
|
672 |
+
# bot doesn't consume instruction itself, just history from user, so why works
|
673 |
+
submit_event1a = instruction.submit(**user_args, queue=queue,
|
674 |
+
api_name='instruction' if allow_api else None)
|
675 |
+
submit_event1b = submit_event1a.then(**user_args2, api_name='instruction2' if allow_api else None)
|
676 |
+
submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
|
677 |
+
.then(clear_instruct, None, iinput)
|
678 |
+
submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
|
679 |
+
queue=queue)
|
680 |
+
submit_event1e = submit_event1d.then(**score_args_submit, api_name='instruction_bot_score' if allow_api else None,
|
681 |
+
queue=queue)
|
682 |
+
submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
|
683 |
+
queue=queue)
|
684 |
+
submit_event1g = submit_event1f.then(**score_args2_submit,
|
685 |
+
api_name='instruction_bot_score2' if allow_api else None, queue=queue)
|
686 |
+
submit_event1h = submit_event1g.then(clear_torch_cache)
|
687 |
+
|
688 |
+
submit_event2a = submit.click(**user_args, api_name='submit' if allow_api else None)
|
689 |
+
submit_event2b = submit_event2a.then(**user_args2, api_name='submit2' if allow_api else None)
|
690 |
+
submit_event2c = submit_event2b.then(clear_instruct, None, instruction) \
|
691 |
+
.then(clear_instruct, None, iinput)
|
692 |
+
submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
|
693 |
+
submit_event2e = submit_event2d.then(**score_args_submit, api_name='submit_bot_score' if allow_api else None,
|
694 |
+
queue=queue)
|
695 |
+
submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue)
|
696 |
+
submit_event2g = submit_event2f.then(**score_args2_submit, api_name='submit_bot_score2' if allow_api else None,
|
697 |
+
queue=queue)
|
698 |
+
submit_event2h = submit_event2g.then(clear_torch_cache)
|
699 |
+
|
700 |
+
submit_event3a = retry.click(**user_args, api_name='retry' if allow_api else None)
|
701 |
+
submit_event3b = submit_event3a.then(**user_args2, api_name='retry2' if allow_api else None)
|
702 |
+
submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
|
703 |
+
.then(clear_instruct, None, iinput)
|
704 |
+
submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
|
705 |
+
queue=queue)
|
706 |
+
submit_event3e = submit_event3d.then(**score_args_submit, api_name='retry_bot_score' if allow_api else None,
|
707 |
+
queue=queue)
|
708 |
+
submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
|
709 |
+
queue=queue)
|
710 |
+
submit_event3g = submit_event3f.then(**score_args2_submit, api_name='retry_bot_score2' if allow_api else None,
|
711 |
+
queue=queue)
|
712 |
+
submit_event3h = submit_event3g.then(clear_torch_cache)
|
713 |
+
|
714 |
+
submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
|
715 |
+
.then(**undo_user_args2, api_name='undo2' if allow_api else None) \
|
716 |
+
.then(clear_instruct, None, instruction) \
|
717 |
+
.then(clear_instruct, None, iinput) \
|
718 |
+
.then(**score_args_submit, api_name='undo_score' if allow_api else None) \
|
719 |
+
.then(**score_args2_submit, api_name='undo_score2' if allow_api else None)
|
720 |
|
721 |
# does both models
|
722 |
clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \
|
|
|
884 |
api_name='system_info' if allow_api else None, queue=False)
|
885 |
|
886 |
# don't pass text_output, don't want to clear output, just stop it
|
887 |
+
# cancel only stops outer generation, not inner generation or non-generation
|
888 |
stop_btn.click(lambda: None, None, None,
|
889 |
+
cancels=[submit_event1d, submit_event1f,
|
890 |
+
submit_event2d, submit_event2f,
|
891 |
+
submit_event3d, submit_event3f,
|
892 |
+
submit_event_nochat],
|
893 |
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False)
|
894 |
demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None)
|
895 |
|
|
|
910 |
|
911 |
|
912 |
input_args_list = ['model_state']
|
913 |
+
inputs_kwargs_list = ['debug', 'save_dir', 'sanitize_bot_response', 'model_state0', 'is_low_mem',
|
914 |
+
'raise_generate_gpu_exceptions', 'chat_context', 'concurrency_count', 'lora_weights']
|
915 |
|
916 |
|
917 |
def get_inputs_list(inputs_dict, model_lower):
|
utils.py
CHANGED
@@ -259,3 +259,37 @@ def wrapped_partial(func, *args, **kwargs):
|
|
259 |
partial_func = functools.partial(func, *args, **kwargs)
|
260 |
functools.update_wrapper(partial_func, func)
|
261 |
return partial_func
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
partial_func = functools.partial(func, *args, **kwargs)
|
260 |
functools.update_wrapper(partial_func, func)
|
261 |
return partial_func
|
262 |
+
|
263 |
+
|
264 |
+
class ThreadException(Exception):
|
265 |
+
pass
|
266 |
+
|
267 |
+
|
268 |
+
class EThread(threading.Thread):
|
269 |
+
# Function that raises the custom exception
|
270 |
+
def __init__(self, group=None, target=None, name=None,
|
271 |
+
args=(), kwargs=None, *, daemon=None, bucket=None):
|
272 |
+
self.bucket = bucket
|
273 |
+
self.streamer = kwargs.get('streamer')
|
274 |
+
self.exc = None
|
275 |
+
super().__init__(group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon)
|
276 |
+
|
277 |
+
def run(self):
|
278 |
+
# Variable that stores the exception, if raised by someFunction
|
279 |
+
try:
|
280 |
+
super().run()
|
281 |
+
except BaseException as e:
|
282 |
+
print("thread exception: %s" % str(sys.exc_info()))
|
283 |
+
self.bucket.put(sys.exc_info())
|
284 |
+
self.exc = e
|
285 |
+
if self.streamer:
|
286 |
+
print("make stop: %s" % str(sys.exc_info()), flush=True)
|
287 |
+
self.streamer.do_stop = True
|
288 |
+
|
289 |
+
def join(self, timeout=None):
|
290 |
+
threading.Thread.join(self)
|
291 |
+
# Since join() returns in caller thread
|
292 |
+
# we re-raise the caught exception
|
293 |
+
# if any was caught
|
294 |
+
if self.exc:
|
295 |
+
raise self.exc
|