oms_sdxl_lcm / app.py
h1t's picture
Update app.py
1783fac
import torch
import gradio as gr
from functools import partial
from diffusers_patch import OMSPipeline
def create_sdxl_lcm_lora_pipe(sd_pipe_name_or_path, oms_name_or_path, lora_name_or_path):
from diffusers import StableDiffusionXLPipeline, LCMScheduler
sd_pipe = StableDiffusionXLPipeline.from_pretrained(sd_pipe_name_or_path, torch_dtype=torch.float16, variant="fp16", add_watermarker=False).to('cuda')
print('successfully load pipe')
sd_scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.load_lora_weights(lora_name_or_path, variant="fp16")
pipe = OMSPipeline.from_pretrained(oms_name_or_path, sd_pipeline = sd_pipe, torch_dtype=torch.float16, variant="fp16", trust_remote_code=True, sd_scheduler=sd_scheduler)
pipe.to('cuda')
return pipe
class GradioDemo:
def __init__(
self,
sd_pipe_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0",
oms_name_or_path = 'h1t/oms_b_openclip_xl',
lora_name_or_path = 'latent-consistency/lcm-lora-sdxl'
):
self.pipe = create_sdxl_lcm_lora_pipe(sd_pipe_name_or_path, oms_name_or_path, lora_name_or_path)
def _inference(
self,
prompt = None,
oms_prompt = None,
oms_guidance_scale = 1.0,
num_inference_steps = 4,
sd_pipe_guidance_scale = 1.0,
seed = 1024,
oms_prompt_flag=True,
):
pipe_kwargs = dict(
prompt = prompt,
num_inference_steps = num_inference_steps,
guidance_scale = sd_pipe_guidance_scale,
)
generator = torch.Generator(device=self.pipe.device).manual_seed(seed)
pipe_kwargs.update(oms_flag=False)
print(f'raw kwargs: {pipe_kwargs}')
image_raw = self.pipe(
**pipe_kwargs,
generator=generator
)['images'][0]
generator = torch.Generator(device=self.pipe.device).manual_seed(seed)
pipe_kwargs.update(oms_flag=True, oms_prompt=prompt, oms_guidance_scale=1.0)
print(f'w/ oms wo/ cfg (consistent) kwargs: {pipe_kwargs}')
image_oms_cp = self.pipe(
**pipe_kwargs,
generator=generator
)['images'][0]
if oms_prompt_flag:
generator = torch.Generator(device=self.pipe.device).manual_seed(seed)
pipe_kwargs.update(oms_prompt=oms_prompt)
print(f'w/ oms wo/ cfg (inconsistent) kwargs: {pipe_kwargs}')
image_oms_icp = self.pipe(
**pipe_kwargs,
generator=generator
)['images'][0]
else:
image_oms_icp = None
oms_guidance_flag = oms_guidance_scale != 1.0
if oms_guidance_flag:
generator = torch.Generator(device=self.pipe.device).manual_seed(seed)
pipe_kwargs.update(oms_guidance_scale=oms_guidance_scale)
print(f'w/ oms +cfg (inconsistent) kwargs: {pipe_kwargs}')
image_oms_cfg = self.pipe(
**pipe_kwargs,
generator=generator
)['images'][0]
else:
image_oms_cfg = None
return image_raw, image_oms_cp, image_oms_icp, image_oms_cfg, gr.update(visible=oms_prompt_flag), gr.update(visible=oms_guidance_flag)
def mainloop(self):
with gr.Blocks() as demo:
gr.Markdown("# One More Step for SDXL w/ LCM-LoRA")
with gr.Group() as inputs:
prompt = gr.Textbox(label="Prompt", value="a cat against orange ground, studio")
with gr.Accordion('OMS Prompt'):
oms_prompt_checkbox = gr.Checkbox(info="Inconsistent OMS prompt allows the additional control of low freq info, default is the same as Prompt. \n Tips:When there is a conflict between the OMS prompt and the base prompt in describing the same object, the model will respect the base prompt.", label="Adding OMS Prompt", value=True)
oms_prompt = gr.Textbox(label="OMS Prompt", value="a black cat", info='try "a black cat" and "a black room" for diverse control.')
with gr.Accordion('OMS Guidance'):
oms_cfg_scale_checkbox = gr.Checkbox(info="OMS Guidance will enhance the OMS prompt, specially focus on color and brightness.", label="Adding OMS Guidance", value=True)
oms_guidance_scale = gr.Slider(label="OMS Guidance Scale", minimum=1.0, maximum=5.0, value=2., step=0.1)
run_button = gr.Button(value="Generate images")
with gr.Accordion("Advanced options", open=False):
num_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=4, step=1)
sd_guidance_scale = gr.Slider(label="SD Pipe Guidance Scale", minimum=1, maximum=3, value=1.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=False, value=1024)
with gr.Row():
output_raw = gr.Image(label="SDXL w/ LCM-LoRA ")
output_oms_cp = gr.Image(label="w/ OMS (consistent) w/o OMS CFG")
output_oms_icp = gr.Image(label="w/ OMS (inconsistent) w/o OMS CFG")
output_oms_cfg = gr.Image(label="w/ OMS w/ OMS CFG")
oms_prompt_checkbox.input(
fn=lambda oms_prompt_flag, prompt, oms_prompt: (oms_prompt if oms_prompt_flag else prompt, gr.update(interactive=oms_prompt_flag)),
inputs=[oms_prompt_checkbox, prompt, oms_prompt],
outputs=[oms_prompt, oms_prompt]
)
oms_cfg_scale_checkbox.input(
fn=lambda oms_cfg_scale_flag: (1.5 if oms_cfg_scale_flag else 1.0, gr.update(interactive=oms_cfg_scale_flag)),
inputs=[oms_cfg_scale_checkbox],
outputs=[oms_guidance_scale, oms_guidance_scale]
)
ips = [prompt, oms_prompt, oms_guidance_scale, num_steps, sd_guidance_scale, seed, oms_prompt_checkbox]
run_button.click(fn=self._inference, inputs=ips, outputs=[output_raw, output_oms_cp, output_oms_icp, output_oms_cfg, output_oms_icp, output_oms_cfg])
demo.queue(max_size=20)
demo.launch()
if __name__ == "__main__":
gradio_demo = GradioDemo()
gradio_demo.mainloop()