OneRestore / model /loss.py
gy65896's picture
Upload 36 files
2940390 verified
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
from math import exp
from torchvision import transforms
from torchvision.models import vgg16
import torchvision
'''
MS-SSIM Loss
'''
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel=1):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(img1.device)
levels = weights.size()[0]
mssim = []
mcs = []
for _ in range(levels):
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
mssim.append(sim)
mcs.append(cs)
img1 = F.avg_pool2d(img1, (2, 2))
img2 = F.avg_pool2d(img2, (2, 2))
mssim = torch.stack(mssim)
mcs = torch.stack(mcs)
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
if normalize:
mssim = (mssim + 1) / 2
mcs = (mcs + 1) / 2
pow1 = mcs ** weights
pow2 = mssim ** weights
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
output = torch.prod(pow1[:-1] * pow2[-1])
return output
# Classes to re-use window
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True, val_range=None):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.val_range = val_range
# Assume 1 channel for SSIM
self.channel = 1
self.window = create_window(window_size)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.dtype == img1.dtype:
window = self.window
else:
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
self.window = window
self.channel = channel
return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
class MSSSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True, channel=3):
super(MSSSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = channel
def forward(self, img1, img2):
# TODO: store window between calls if possible
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
class TVLoss(nn.Module):
def __init__(self,TVLoss_weight=1):
super(TVLoss,self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self,x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self._tensor_size(x[:,:,1:,:]) #算出总共求了多少次差
count_w = self._tensor_size(x[:,:,:,1:])
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
# x[:,:,1:,:]-x[:,:,:h_x-1,:]就是对原图进行错位,分成两张像素位置差1的图片,第一张图片
# 从像素点1开始(原图从0开始),到最后一个像素点,第二张图片从像素点0开始,到倒数第二个
# 像素点,这样就实现了对原图进行错位,分成两张图的操作,做差之后就是原图中每个像素点与相
# 邻的下一个像素点的差。
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
def _tensor_size(self,t):
return t.size()[1]*t.size()[2]*t.size()[3]
def _tensor_size(self,t):
return t.size()[1]*t.size()[2]*t.size()[3]
class ContrastLoss(nn.Module):
def __init__(self):
super(ContrastLoss, self).__init__()
self.l1 = nn.L1Loss()
self.model = vgg16(weights = torchvision.models.VGG16_Weights.DEFAULT)
self.model = self.model.features[:16].to("cuda" if torch.cuda.is_available() else "cpu")
for param in self.model.parameters():
param.requires_grad = False
self.layer_name_mapping = {
'3': "relu1_2",
'8': "relu2_2",
'15': "relu3_3"
}
def gen_features(self, x):
output = []
for name, module in self.model._modules.items():
x = module(x)
if name in self.layer_name_mapping:
output.append(x)
return output
def forward(self, inp, pos, neg, out):
inp_t = inp
inp_x0 = self.gen_features(inp_t)
pos_t = pos
pos_x0 = self.gen_features(pos_t)
out_t = out
out_x0 = self.gen_features(out_t)
neg_t, neg_x0 = [],[]
for i in range(neg.shape[1]):
neg_i = neg[:,i,:,:]
neg_t.append(neg_i)
neg_x0_i = self.gen_features(neg_i)
neg_x0.append(neg_x0_i)
loss = 0
for i in range(len(pos_x0)):
pos_term = self.l1(out_x0[i], pos_x0[i].detach())
inp_term = self.l1(out_x0[i], inp_x0[i].detach())/(len(neg_x0)+1)
neg_term = sum(self.l1(out_x0[i], neg_x0[j][i].detach()) for j in range(len(neg_x0)))/(len(neg_x0)+1)
loss = loss + pos_term / (inp_term+neg_term+1e-7)
return loss / len(pos_x0)
class Total_loss(nn.Module):
def __init__(self, args):
super(Total_loss, self).__init__()
self.con_loss = ContrastLoss()
self.weight_sl1, self.weight_msssim, self.weight_drl = args.loss_weight
def forward(self, inp, pos, neg, out):
smooth_loss_l1 = F.smooth_l1_loss(out, pos)
msssim_loss = 1-msssim(out, pos, normalize=True)
c_loss = self.con_loss(inp[0], pos, neg, out)
total_loss = self.weight_sl1 * smooth_loss_l1 + self.weight_msssim * msssim_loss + self.weight_drl * c_loss
return total_loss