Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
import cv2 as cv | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from math import exp | |
from torchvision import transforms | |
from torchvision.models import vgg16 | |
import torchvision | |
''' | |
MS-SSIM Loss | |
''' | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) | |
return gauss/gauss.sum() | |
def create_window(window_size, channel=1): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() | |
return window | |
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): | |
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). | |
if val_range is None: | |
if torch.max(img1) > 128: | |
max_val = 255 | |
else: | |
max_val = 1 | |
if torch.min(img1) < -0.5: | |
min_val = -1 | |
else: | |
min_val = 0 | |
L = max_val - min_val | |
else: | |
L = val_range | |
padd = 0 | |
(_, channel, height, width) = img1.size() | |
if window is None: | |
real_size = min(window_size, height, width) | |
window = create_window(real_size, channel=channel).to(img1.device) | |
mu1 = F.conv2d(img1, window, padding=padd, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=padd, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 | |
C1 = (0.01 * L) ** 2 | |
C2 = (0.03 * L) ** 2 | |
v1 = 2.0 * sigma12 + C2 | |
v2 = sigma1_sq + sigma2_sq + C2 | |
cs = torch.mean(v1 / v2) # contrast sensitivity | |
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) | |
if size_average: | |
ret = ssim_map.mean() | |
else: | |
ret = ssim_map.mean(1).mean(1).mean(1) | |
if full: | |
return ret, cs | |
return ret | |
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): | |
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(img1.device) | |
levels = weights.size()[0] | |
mssim = [] | |
mcs = [] | |
for _ in range(levels): | |
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) | |
mssim.append(sim) | |
mcs.append(cs) | |
img1 = F.avg_pool2d(img1, (2, 2)) | |
img2 = F.avg_pool2d(img2, (2, 2)) | |
mssim = torch.stack(mssim) | |
mcs = torch.stack(mcs) | |
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition) | |
if normalize: | |
mssim = (mssim + 1) / 2 | |
mcs = (mcs + 1) / 2 | |
pow1 = mcs ** weights | |
pow2 = mssim ** weights | |
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/ | |
output = torch.prod(pow1[:-1] * pow2[-1]) | |
return output | |
# Classes to re-use window | |
class SSIM(torch.nn.Module): | |
def __init__(self, window_size=11, size_average=True, val_range=None): | |
super(SSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.val_range = val_range | |
# Assume 1 channel for SSIM | |
self.channel = 1 | |
self.window = create_window(window_size) | |
def forward(self, img1, img2): | |
(_, channel, _, _) = img1.size() | |
if channel == self.channel and self.window.dtype == img1.dtype: | |
window = self.window | |
else: | |
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype) | |
self.window = window | |
self.channel = channel | |
return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average) | |
class MSSSIM(torch.nn.Module): | |
def __init__(self, window_size=11, size_average=True, channel=3): | |
super(MSSSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = channel | |
def forward(self, img1, img2): | |
# TODO: store window between calls if possible | |
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average) | |
class TVLoss(nn.Module): | |
def __init__(self,TVLoss_weight=1): | |
super(TVLoss,self).__init__() | |
self.TVLoss_weight = TVLoss_weight | |
def forward(self,x): | |
batch_size = x.size()[0] | |
h_x = x.size()[2] | |
w_x = x.size()[3] | |
count_h = self._tensor_size(x[:,:,1:,:]) #算出总共求了多少次差 | |
count_w = self._tensor_size(x[:,:,:,1:]) | |
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum() | |
# x[:,:,1:,:]-x[:,:,:h_x-1,:]就是对原图进行错位,分成两张像素位置差1的图片,第一张图片 | |
# 从像素点1开始(原图从0开始),到最后一个像素点,第二张图片从像素点0开始,到倒数第二个 | |
# 像素点,这样就实现了对原图进行错位,分成两张图的操作,做差之后就是原图中每个像素点与相 | |
# 邻的下一个像素点的差。 | |
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum() | |
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size | |
def _tensor_size(self,t): | |
return t.size()[1]*t.size()[2]*t.size()[3] | |
def _tensor_size(self,t): | |
return t.size()[1]*t.size()[2]*t.size()[3] | |
class ContrastLoss(nn.Module): | |
def __init__(self): | |
super(ContrastLoss, self).__init__() | |
self.l1 = nn.L1Loss() | |
self.model = vgg16(weights = torchvision.models.VGG16_Weights.DEFAULT) | |
self.model = self.model.features[:16].to("cuda" if torch.cuda.is_available() else "cpu") | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
self.layer_name_mapping = { | |
'3': "relu1_2", | |
'8': "relu2_2", | |
'15': "relu3_3" | |
} | |
def gen_features(self, x): | |
output = [] | |
for name, module in self.model._modules.items(): | |
x = module(x) | |
if name in self.layer_name_mapping: | |
output.append(x) | |
return output | |
def forward(self, inp, pos, neg, out): | |
inp_t = inp | |
inp_x0 = self.gen_features(inp_t) | |
pos_t = pos | |
pos_x0 = self.gen_features(pos_t) | |
out_t = out | |
out_x0 = self.gen_features(out_t) | |
neg_t, neg_x0 = [],[] | |
for i in range(neg.shape[1]): | |
neg_i = neg[:,i,:,:] | |
neg_t.append(neg_i) | |
neg_x0_i = self.gen_features(neg_i) | |
neg_x0.append(neg_x0_i) | |
loss = 0 | |
for i in range(len(pos_x0)): | |
pos_term = self.l1(out_x0[i], pos_x0[i].detach()) | |
inp_term = self.l1(out_x0[i], inp_x0[i].detach())/(len(neg_x0)+1) | |
neg_term = sum(self.l1(out_x0[i], neg_x0[j][i].detach()) for j in range(len(neg_x0)))/(len(neg_x0)+1) | |
loss = loss + pos_term / (inp_term+neg_term+1e-7) | |
return loss / len(pos_x0) | |
class Total_loss(nn.Module): | |
def __init__(self, args): | |
super(Total_loss, self).__init__() | |
self.con_loss = ContrastLoss() | |
self.weight_sl1, self.weight_msssim, self.weight_drl = args.loss_weight | |
def forward(self, inp, pos, neg, out): | |
smooth_loss_l1 = F.smooth_l1_loss(out, pos) | |
msssim_loss = 1-msssim(out, pos, normalize=True) | |
c_loss = self.con_loss(inp[0], pos, neg, out) | |
total_loss = self.weight_sl1 * smooth_loss_l1 + self.weight_msssim * msssim_loss + self.weight_drl * c_loss | |
return total_loss |